

Préparation à l'Agrégation — Relativité Restreinte

EXERCICES — CORRIGÉ

Centre de Montrouge — Année Universitaire 2022–2023 Intervenant : L. Le Guillou (Sorbonne Université / LPNHE)

1ère Partie

La transformation de Galilée — L'expérience de Michelson et Morley — Les postulats d'Einstein — Les équations de Lorentz — Contraction des longueurs, dilatation du temps — Les diagrammes d'espace-temps : diagrammes de Minkowski, diagrammes de Loedel.

1. Mécanique "classique" : transformation de Galilée

Un navire manœuvre dans un port, et se déplace à vitesse constante $v=3\,\mathrm{m/s}$ parallèlement au quai.

1.1 — Sur le quai, un enfant court à la vitesse $u = 2 \,\text{m/s}$ par rapport au référentiel du quai, dans le même sens que le bateau. Quelle est sa vitesse dans le référentiel du navire?

Soit \mathcal{R} le référentiel du quai, et \mathcal{R}' celui du navire, qui se déplace parallèlement au quai à la vitesse v. On prendra les axes Ox et Ox' parallèles au quai et au mouvement relatif du navire.

La vitesse de l'enfant est $u=u_x=2\,\mathrm{m/s}$ dans \mathcal{R} ; d'après la loi galiléenne de composition des vitesses, elle vaut :

$$u'_{x} = u_{x} - v = 2 \,\mathrm{m/s} - 3 \,\mathrm{m/s} = -1 \,\mathrm{m/s}$$

dans le référentiel \mathcal{R}' du navire.

1.2 — Un objet tombe en chute libre du haut du grand mât ($h = 10\,\mathrm{m}$). Décrivez sa trajectoire pour un observateur immobile sur le quai, et pour un marin de l'équipage. Où tombe-t-il? Ecrivez et résolvez les équations du mouvement dans le référentiel du quai et dans celui du bateau (on pourra utiliser la transformation de Galilée).

Dans le référentiel \mathcal{R}' du navire, l'objet en chute libre qui se décroche du haut du mât ne subit que son propre poids $\mathbf{P}=m\mathbf{g}=-mg\,\mathbf{e}_z$ (on néglige ici les frottements de l'air). L'équation de son mouvement est donc :

$$m\ddot{\mathbf{r}}' = m\mathbf{g} = -mg\,\mathbf{e}_z \qquad \text{d'où} \qquad \left\{ \begin{array}{l} \ddot{x}' = 0 \\ \ddot{y}' = 0 \\ \ddot{z}' = -g \end{array} \right. \qquad \left\{ \begin{array}{l} \dot{x}' = 0 \\ \dot{y}' = 0 \\ \dot{z}' = -gt \end{array} \right. \qquad \left\{ \begin{array}{l} x'(t) = 0 \\ y'(t) = 0 \\ z'(t) = h - \frac{1}{2}gt^2 \end{array} \right.$$

en prenant le pied du grand mât comme origine O' des coordonnées dans \mathcal{R}' .

Au bout d'un temps $t = \sqrt{2h/g} \approx 1.4$ s, l'objet tombe au pied du mât en O'.

On peut obtenir la trajectoire du même objet dans le référentiel du quai en appliquant la transformation de Galilée,

$$\begin{cases} x(t) = x'(t) + vt = vt \\ y(t) = y'(t) = 0 \\ z(t) = z'(t) = h - \frac{1}{2}gt^2 \end{cases}$$
 d'où $z(x) = h - \frac{1}{2}\frac{g}{v^2}x^2$

ce qui correspond dans \mathcal{R} à un arc de parabole.

1.3 — L'enfant s'arrête sur le quai, puis lance son ballon à la verticale au dessus de lui à la vitesse w ($w=10\,\mathrm{m/s}$), puis le rattrape. Ecrivez et résolvez les équations du mouvement du ballon dans les deux référentiels.

Dans le référentiel du quai, comme précédemment, le ballon de vitesse initiale $\mathbf{w}=w\,\mathbf{e}_z$ n'est soumis qu'à son poids $\mathbf{P}=m\mathbf{g}=-mg\,\mathbf{e}_z$. En supposant que l'enfant est en $x=x_0$ lorsqu'il lance son ballon, les équations du mouvement du ballon dans \mathcal{R} s'écrivent :

$$m\ddot{\mathbf{r}} = -mg\,\mathbf{e}_z \qquad \text{d'où} \qquad \left\{ \begin{array}{l} \ddot{x} = \ 0 \\ \ddot{y} = \ 0 \\ \ddot{z} = \ -g \end{array} \right. \qquad \left\{ \begin{array}{l} \dot{x} = \ 0 \\ \dot{y} = \ 0 \\ \dot{z} = \ w - gt \end{array} \right. \qquad \left\{ \begin{array}{l} x(t) = \ x_0 \\ y(t) = \ 0 \\ z(t) = \ wt - \frac{1}{2}gt^2 + h_{\text{enfant}} \end{array} \right.$$

Le ballon suit ainsi une trajectoire verticale ascendante jusqu'à $t=+w/g\simeq 1$ s, où il atteint la hauteur $w^2/(2g)\simeq 5$ m au dessus de l'enfant, puis retombe dans ses mains à $t=2w/g\simeq 2$ s.

Vu du navire, les équations du mouvement du ballon deviennent (transformation de Galilée) :

$$\begin{cases} x'(t) = x(t) - vt = x_0 - vt \\ y'(t) = y(t) = 0 \\ z'(t) = wt - \frac{1}{2}gt^2 + h_{\text{enfant}} \end{cases}$$

Ce qui correspond dans \mathcal{R}' à une trajectoire parabolique.

2. Pêche à la ligne

On traitera ce problème en mécanique classique (relativité galiléenne).

Un pêcheur s'adonne à son loisir favori dans sa barque, au milieu d'une rivière. Ayant fait bonne pêche, il décide de rentrer chez lui, et il remonte le courant à la rame, en ramant à la vitesse constante w par rapport à la rivière.

Passant sous un pont, il perd sans s'en rendre compte son chapeau, qui tombe à l'eau, et est emporté par le courant.

Le pêcheur réalise la perte de son chapeau au bout de 30 minutes. Il décide alors de redescendre la rivière et, en ramant toujours à la même vitesse w par rapport au courant, il parvient à rattraper son chapeau 5 km en aval du pont.

Quelle est la vitesse du courant (par rapport aux berges)?

Notons \mathcal{R} le référentiel des berges de la rivière, et \mathcal{R}' le référentiel de la rivière, en translation uniforme à la vitesse $\mathbf{v} = v \, \mathbf{e}_x = \mathbf{v}(\mathcal{R}'/\mathcal{R})$ par rapport au référentiel \mathcal{R} des berges.

La première approche consiste à analyser les trajectoires du pêcheur et de son chapeau dans \mathcal{R} . Ce n'est pas la méthode la plus directe comme nous le verrons plus loin.

On prendra comme origine des temps t=0 le moment de la perte du chapeau sous le pont, et la position de cet événement comme origine des abscisses, dans les deux référentiels. On notera t_C l'instant où le pêcheur récupère son chapeau, et D=5 km la distance en aval du pont atteinte par le chapeau quand le pêcheur le ramasse dans l'eau; on notera $\Delta t_A=30$ minutes le temps écoulé entre la perte du chapeau sous le pont et le moment où le pêcheur fait demi-tour et Δt_R le temps nécessaire ensuite au pêcheur pour rejoindre son chapeau à la dérive. La succession des événements vu dans $\mathcal R$ est représentée sur la figure 1.

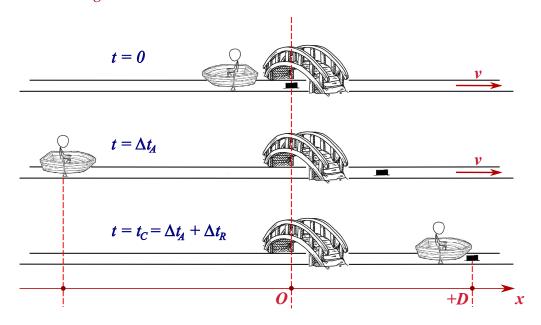


FIGURE 1 – Trajectoires du pêcheur et de son chapeau vues dans le référentiel des berges.

Dans le référentiel des berges \mathcal{R} , le pêcheur remonte tout d'abord la rivière à la vitesse u=u'+v=-w+v jusqu'à l'abscisse $x=(-w+v)\Delta t_A$. Il prend alors conscience de la perte de son chapeau, et parcourt ensuite la rivière en sens inverse, à la vitesse u=u'+v=w+v, pour atteindre l'abscisse x=+D lorsqu'il rattrape son chapeau, à $t=t_C$. On a ainsi :

$$x_{\text{p\^{e}cheur}}(t_C) = +D = (-w + v)\Delta t_A + (w + v)\Delta t_R$$

Par ailleurs, au même instant le chapeau a descendu la rivière à la vitesse v, et se trouve ainsi à la même abscisse,

$$x_{\text{chapeau}}(t_C) = +D = v(\Delta t_A + \Delta t_R)$$

De ces deux équations, on déduit :

$$D = (-w+v)\Delta t_A + (w+v)\Delta t_R = v(\Delta t_A + \Delta t_R)$$
 d'où $w(-\Delta t_A + \Delta t_R) = 0$ i.e. $\Delta t_R = \Delta t_A$

D'où on déduit la vitesse d'écoulement de la rivière,

$$D = 2v\Delta t_A$$
 $v = \frac{D}{2\Delta t_A} = \frac{5 \,\mathrm{km}}{1 \,\mathrm{h}} = 5 \,\mathrm{km} \cdot \mathrm{h}^{-1}.$

La seconde approche, plus élégante et plus immédiate, consiste à analyser les trajectoires dans le **référentiel de la rivière**, où, une fois tombé à l'eau sous le pont, **le chapeau est immobile**. La succession des événements vus dans \mathcal{R}' est représentée figure 2.

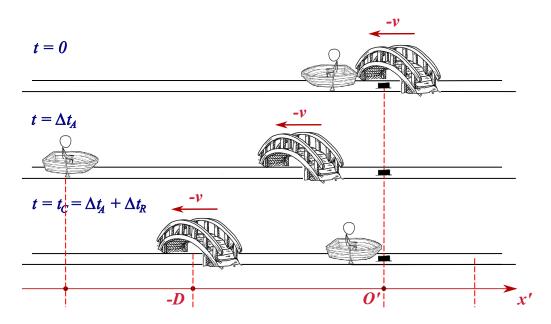


FIGURE 2 – Trajectoires du pont, du pêcheur et de son chapeau vues dans le référentiel de la rivière.

Entre la perte de son chapeau et sa récupération, la trajectoire du pêcheur consiste en un aller-retour sur l'eau, à la vitesse $u_x' = -w$ à l'aller, puis $u_x' = +w$ au retour, jusqu'à rejoindre son chapeau. Dans le référentiel de la rivière, il est évident que les durées des voyages aller et retour **sont égales**. On retrouve alors le résultat précédent, de manière immédiate,

$$x'_{\text{pecheur}}(t_C) = 0 = -w\Delta t_A + w\Delta t_R$$
 d'où $\Delta t_A = \Delta t_R$

À ce moment, le pont, qui était à l'abcisse x'=0 au moment de la chute du chapeau, est désormais à l'abscisse :

$$x'_{\text{pont}}(t_C) = -D = -v(\Delta t_A + \Delta t_R) = -2v\Delta t_A$$

D'où on déduit immédiatement la vitesse de la rivière par rapport à ses berges :

$$v = \frac{D}{2\Delta t_A} = \frac{5 \,\mathrm{km}}{1 \,\mathrm{h}} = 5 \,\mathrm{km} \cdot \mathrm{h}^{-1}.$$

Ce problème souligne l'importance du choix du référentiel dans l'analyse d'un problème de cinématique, que ce soit en mécanique classique ou relativiste.

3. L'expérience de Michelson et Morley

Une source lumineuse est placée à une distance L d'un miroir et émet un rayon lumineux dans sa direction. Le rayon est réfléchi et revient vers la source.

3.1 — Quel est le temps mis par la lumière pour effectuer l'aller-retour entre la source et le miroir?

La vitesse de la lumière étant c, le temps Δt_A mis pour le trajet aller est le même que celui pour le trajet retour Δt_R ,

$$\Delta t_A = \frac{L}{c}$$
 $\Delta t_R = \frac{L}{c}$ et pour l'aller-retour $\Delta t_{AR} = \Delta t_A + \Delta t_R = \frac{2L}{c}$

La source et le miroir sont maintenant en translation rectiligne et uniforme dans une direction perpendiculaire à l'axe source-miroir et avec une vitesse v.

3.2 — Représenter graphiquement la situation telle que la voit un observateur immobile. Pour cet observateur, compte-tenu de ce qu'il observe, quel est le temps T_{\perp} mis par le rayon lumineux pour faire l'aller-retour entre la source et le miroir?

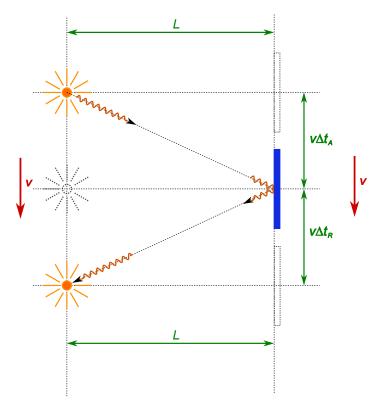


FIGURE 3 – Trajectoire aller-retour du rayon lumineux entre la source et le miroir. Dans le référentiel considéré (éther), la source et le miroir sont en translation uniforme à la vitesse v, dans une direction perpendiculaire à l'axe source-miroir. À l'aller comme au retour, on obtient la distance parcourue par le rayon par le théorème de Pythagore.

Considérons la situation depuis le référentiel de l'observateur immobile, qui est aussi celui de l'éther, dans l'interprétation classique pré-relativiste, et par conséquent, le référentiel où la vitesse de la lumière est *c*

En appliquant le théorème de Pythagore sur le trajet aller (de durée Δt_A), on obtient :

$$L^2 + v^2 \Delta t_A^2 = c^2 \Delta t_A^2$$

D'où on déduit l'expression Δt_A de la durée du trajet aller,

$$\Delta t_A = \frac{L}{c} \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Pour le trajet retour, de durée Δt_R , le raisonnement est identique,

$$\Delta t_R = \frac{L}{c} \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Et le temps total aller-retour est ainsi :

$$T_{\perp} = \Delta t_{AR} = \Delta t_A + \Delta t_R = \frac{2L}{c} \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{1}$$

3.3 — Répondre à la même question dans le cas où le déplacement se fait dans la direction source-miroir, si cette distance vaut L'. On nomme la durée trouvée $T_{/\!/}$.

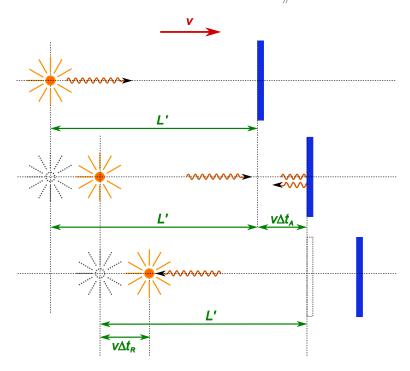


FIGURE 4 – Trajectoire aller-retour du rayon lumineux entre la source et le miroir. Dans le référentiel considéré (éther), la source et le miroir sont en translation uniforme à la vitesse v, dans une direction parallèle à l'axe source-miroir. À l'aller, le rayon lumineux parcourt une distance $L' + v\Delta t_A$, car le miroir s'est éloigné de $v\Delta t_A$ pendant le trajet; au retour, au contraire, comme la source vient à la rencontre du rayon lumineux, le trajet parcouru est $L' - v\Delta t_A$.

Comme précédemment, on raisonne dans le référentiel de l'éther où la vitesse de la lumière est c. Pendant le trajet aller, de durée Δt_A , le rayon lumineux parcourt une distance $L' + v \Delta t_A$, car le miroir s'est éloigné de $v \Delta t_A$ pendant le trajet :

$$c\Delta t_A = L' + v\Delta t_A$$
 d'où $\Delta t_A = \frac{L'}{c-v}$

Au retour, au contraire, la source vient à la rencontre du rayon lumineux, le trajet parcouru par la lumière est réduit d'autant et vaut $L'-v\Delta t_R$. Ce qui donne :

$$c\Delta t_R = L' - v\Delta t_R$$
 d'où $\Delta t_R = \frac{L'}{c+v}$

Le temps nécessaire pour l'aller-retour du rayon lumineux est donc :

$$T_{/\!/} = \Delta t_{AR} = \Delta t_A + \Delta t_R = \frac{2L'}{c} \frac{1}{1 - \frac{v^2}{c^2}}.$$
 (2)

3.4 — On suppose pour cette question que L = L'. Comparer T_{\perp} et T_{\parallel} . Commenter ce résultat en faisant le lien avec l'expérience de Michelson et Morley.

L'expérience de Michelson et Morley vise à mettre en évidence le mouvement de l'interféromètre (solidaire de la Terre) par rapport au référentiel de l'éther, le milieu hypothétique de propagation des ondes lumineuses. Dans le référentiel de l'éther, la durée de parcours des rayons lumineux le long des deux bras est affectée par le mouvement, et $T_{\perp} \neq T_{\parallel}$. D'après ce qui précède, la différence de temps de parcours est :

$$T_{/\!/} - T_{\perp} = \frac{2L}{c} \left[\frac{1}{1 - \frac{v^2}{c^2}} - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \right]$$
 (3)

Ce qui implique une différence de marche δ :

$$\delta = c \left(T_{/\!/} - T_{\perp} \right) = 2L \left[\frac{1}{1 - \frac{v^2}{c^2}} - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \right] \approx 2L \left[1 + \frac{v^2}{c^2} - 1 - \frac{1}{2} \frac{v^2}{c^2} \right] = L \frac{v^2}{c^2}$$
(4)

et induit un décalage du motif des franges de δ/λ où λ est la longueur d'onde de la source monochromatique utilisée. On a ici supposé v^2/c^2 petit, ce qui n'est pas déraisonnable : par exemple, si le référentiel de l'éther est solidaire du système solaire, on s'attend à une vitesse relative de l'ordre $v_{\oplus} \approx 30\,\mathrm{km\cdot s^{-1}}$, i.e. $v_{\oplus}/c \approx 10^{-4}\,\mathrm{soit}\,v_{\oplus}^2/c^2 \approx 10^{-8}$. Bien sûr, sous cette hypothèse (éther solidaire du système solaire), la vitesse relative de l'interféromètre dépend de l'orientation du montage optique, ainsi que de la période de l'année du fait du mouvement de la terre sur son orbite 1 .

On ne peut évidemment pas mesurer le décalage du motif des franges par rapport à la situation où l'interféromètre serait immobile par rapport à l'éther; par contre, on peut très bien échanger les bras perpendiculaire et parallèle de l'interféromètre en le faisant pivoter sur lui-même de 90° . Dans ce cas, la différence de marche entre les deux configurations sera 2δ , et le motif de franges se décalera de :

$$\Delta p = 2\frac{\delta}{\lambda} \approx \frac{2L}{\lambda} \frac{v^2}{c^2} \tag{5}$$

Ainsi, si les bras de l'interféromètre font 1 m, pour une source monochromatique de longueur d'onde $\lambda=500\,\mathrm{nm}$, lorsqu'on fait tourner l'interféromètre de 90° , on s'attend à un décalage du motif des franges de :

$$\Delta p = 2\frac{\delta}{\lambda} \approx \frac{2L}{\lambda} \frac{v^2}{c^2} \approx 0.04 \, \text{interfrange}$$
 (6)

ce qui est tout à fait mesurable. En pratique, on mesure la position des franges pour différentes positions azimutales de l'interféromètre (typiquement 16 angles différents dans les expériences de Miller), et on note la position des franges pour chaque angle.

Lorsque Michelson et Morley réalisent l'expérience, ils ne constatent aucun décalage du motif de franges. Ils effectuent la mesure à différentes heures de la journée, plusieurs jours d'affilée. L'expérience sera répétée de nombreuses fois, à différentes périodes de l'année, avec des interféromètres de plus en plus grands (la sensibilité augmente avec la longueur L des bras) et de sensibilité croissante, mais jamais aucun décalage significatif dû au *vent d'éther* n'a pu être mis en évidence, ce qui invalide l'hypothèse de l'existence de l'éther et d'un référentiel privilégié associé au support de propagation de la lumière.

^{1.} On pourrait évidemment considérer que l'éther est solidaire du référentiel galactique plutôt que du système solaire, mais l'effet serait encore plus conséquent, avec $v_{\odot} \approx 200 \, \mathrm{km \cdot s}^{-1}$.

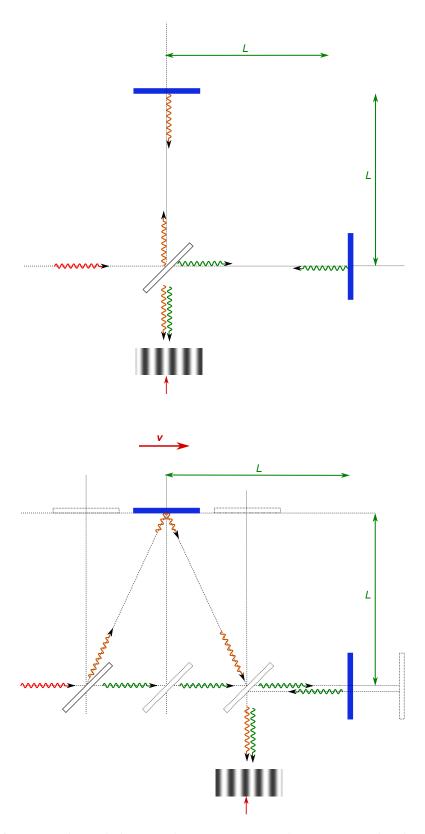


FIGURE 5 – Interféromètre de Michelson. En haut : trajectoires des rayons sur les deux bras, vus dans le référentiel où le dispositif est au repos. En bas : trajectoires des rayons sur les deux bras, lorsque l'interféromètre est en mouvement à la vitesse v par rapport au référentiel de l'éther. En orange, trajectoire des rayons sur le bras perpendiculaire au mouvement relatif; en vert, trajectoire des rayons sur le bras parallèle au mouvement relatif à l'éther.

Le tableau ci-dessous (tiré de Shankland, et al., *Rev. Mod. Phys.* 27, 167 (1955)) regroupe les résultats obtenus par Michelson et Morley, ainsi que ceux des tentatives suivantes au début du 20^{ième} siècle.

Expérience	Longueur des bras L	Décalage attendu	Observation	Rapport
Michelson (1881)	1.20 m	0.04 frange	0.02 frange	2
Michelson & Morley (1887)	11.00 m	0.40 frange	0.01 frange	40
Morley & Miller (1902-04)	32.20 m	1.13 frange	0.015 frange	80
Illingworth (1927)	2.00 m	0.07 frange	0.0004 frange	175
Joos (1930)	21.00 m	0.75 frange	0.002 frange	375

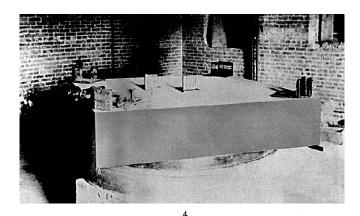
3.5 — On suppose maintenant que $L \neq L'$. Quelle devrait être la valeur de L' pour que la condition $T_{\perp} = T_{//}$ soit vérifiée?

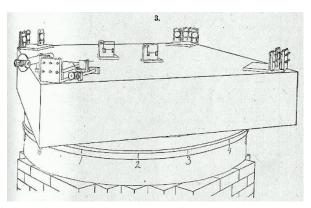
Pour qu'il n'y ait aucun décalage des franges, soit $\Delta p=0$, comme constaté expérimentalement, il faut que $T_{/\!/}=T_{\perp}$, c'est à dire :

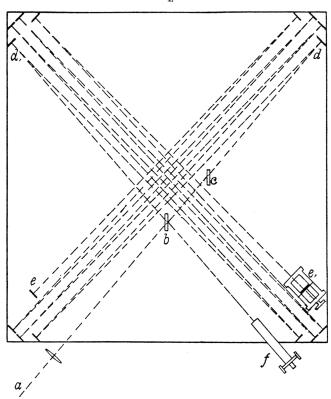
$$L' = L_{/\!/} = L_{\perp} \sqrt{1 - \frac{v^2}{c^2}} = L \sqrt{1 - \frac{v^2}{c^2}} < L_{\perp} = L$$

et ce, même lorsqu'on échange les bras par rotation du montage. Il faut donc imaginer que le bras parallèle au mouvement relatif par rapport à l'éther voit sa longueur contractée d'un facteur $\sqrt{1-v^2/c^2}$; autrement dit, que les objets physiques se contractent longitudinalement dans le *vent d'éther* de telle sorte qu'on obtienne exactement le résultat négatif de l'expérience de Michelson.

Cette proposition (ainsi que la possibilité que l'éther soit entraîné par les objets en mouvement), quelque peu *ad hoc*, sera avancée notamment par FitzGerald (1889) et par Lorentz (1892) pour sauver la théorie de l'éther luminifère, avant la formulation de la relativité restreinte par Einstein (1905).







(a) Source : alternativement, lampe Argand (quinquet) et lampe à vapeur de Sodium. (b) Lame séparatrice. (c) Lame compensatrice, servant à compenser le supplément de chemin optique dû aux deux passages supplémentaires de l'autre rayon à travers le verre de la lame séparatrice. (d) Miroirs supplémentaires pour augmenter le trajet effectif des rayons sur les deux bras. (e) Miroir fixe. (e') Miroir monté sur une platine micrométrique, pour ajuster le chemin optique. (f) Lunette pour observer les franges d'interférences, équipée d'une mire graduée

FIGURE 6 – Interféromètre de Michelson (expérience de 1887). À gauche, photographie du dispositif expérimental de l'expérience de 1887. L'interféromètre est monté sur un bloc de marbre qui flotte sur un bain de mercure, ce qui permet de le faire tourner sur lui-même. Des miroirs permettent d'allonger les trajets des rayons lumineux sur les deux bras en leur faisant faire des allers-retours supplémentaires. À droite, schéma du dispositif. Au-dessous, schéma du trajet des rayons lumineux. Il existe très peu de photographies de l'expérience originale. [Figures tirées de A. A. Michelson & E. W. Morley, "On the Relative Motion of the Earth and the Luminiferous Ether", American Journal of Science (1887), s3-34 (203) 333-345.

4. Invariance de l'intervalle d'espace-temps

4.1 — Montrez que la transformation de Lorentz entraı̂ne l'invariance de l'intervalle élémentaire d'espace-temps $\mathrm{d}s^2$:

$$ds^{2} = c^{2}dt^{2} - d\mathbf{r}^{2} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}$$
(7)

Considérons un événement quelconque E, de coordonnées (ct,x,y,z) dans un référentiel inertiel \mathcal{R} . Dans un autre référentiel inertiel \mathcal{R}' , en translation uniforme à la vitesse v par rapport au référentiel \mathcal{R} , les coordonnées du même événement E s'obtiennent par la transformation de Lorentz :

$$\begin{cases}
ct' = \gamma (ct - \beta x) \\
x' = \gamma (x - \beta ct) \\
y' = y \\
z' = z
\end{cases}$$

Considérons un intervalle élémentaire d'espace-temps $(c dt, d\mathbf{r}) = (c dt, dx, dy, dz)$ entre deux événements infiniment proches, vus dans le référentiel inertiel \mathcal{R} . Dans \mathcal{R}' cet intervalle devient :

$$\begin{cases} c dt' = \gamma (c dt - \beta dx) \\ dx' = \gamma (dx - \beta c dt) \\ dy' = dy \\ dz' = dz \end{cases}$$

Écrivons la pseudo-norme carrée de cet intervalle dans \mathcal{R}' :

$$\begin{split} \mathrm{d}s'^{\,2} &= c^2 (\mathrm{d}t')^2 - (\mathrm{d}\mathbf{r}')^2 = c^2 (\mathrm{d}t')^2 - (\mathrm{d}x')^2 - (\mathrm{d}y')^2 - (\mathrm{d}z')^2 \\ &= \gamma^2 \, (c\,\mathrm{d}t - \beta\mathrm{d}x)^2 - \gamma^2 \, (\mathrm{d}x - \beta c\,\mathrm{d}t)^2 - \mathrm{d}y^2 - \mathrm{d}z^2 \\ &= \gamma^2 c^2 \mathrm{d}t^2 + \gamma^2 \beta^2 \mathrm{d}x^2 - 2\gamma^2 \beta c\,\mathrm{d}t\mathrm{d}x - \gamma^2 \mathrm{d}x^2 - \gamma^2 \beta^2 c^2 \mathrm{d}t^2 + 2\gamma^2 \beta c\,\mathrm{d}t\mathrm{d}x - \mathrm{d}y^2 - \mathrm{d}z^2 \\ &= \gamma^2 \, (1 - \beta^2) \, c^2 \mathrm{d}t^2 - \gamma^2 \, (1 - \beta^2) \, \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 = c^2 \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 = c^2 \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 = c^2 \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 = c^2 \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 = c^2 \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 = c^2 \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 = c^2 \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 = c^2 \mathrm{d}t^2 - \mathrm{d}x^2 - \mathrm{d}y^2 - \mathrm{d}z^2 - \mathrm{$$

La pseudo-norme carrée de l'intervalle élémentaire d'espace-temps est un invariant de Lorentz.

4.2 — Si dr est l'élément d'espace parcouru par un objet matériel pendant la durée $\mathrm{d}t$, montrez que la pseudo-norme carrée de l'intervalle élémentaire d'espace-temps $\mathrm{d}s^2$ peut aussi s'écrire : $\mathrm{d}s^2 = c^2\mathrm{d}\tau^2$, où τ est le temps propre de l'objet en question. Déduisez-en que l'intervalle de temps propre est aussi un invariant de Lorentz.

Soit \mathcal{R}^* le référentiel propre de l'objet, ou, plus précisément, le référentiel galiléen tangent qui se confond avec le référentiel de l'objet considéré à l'instant t. On a alors, par invariance de la norme au carré de l'intervalle d'espace-temps :

$$ds^{2} = c^{2}dt^{2} - d\mathbf{r}^{2} = c^{2}(dt^{*})^{2} - (d\mathbf{r}^{*})^{2} = c^{2}d\tau^{2}$$

Car dans le référentiel propre \mathcal{R}^* , l'intervalle élémentaire de temps est l'intervalle de temps propre : $dt^* = d\tau$; de plus, l'objet est immobile dans son propre référentiel : $d\mathbf{r}^* = \mathbf{0}$.

Comme $\mathrm{d}s^2$ est un invariant de Lorentz, et que la vitesse de la lumière dans le vide c est la même dans tous les référentiels galiléens, alors $\mathrm{d}\tau^2$ est aussi un invariant. Le temps propre τ , c'est à dire le temps qu'indiquerait une horloge parfaite attachée à l'objet considéré, est un invariant de Lorentz, et correspond à une réalité physique indépendante de l'observateur et du choix du référentiel d'observation.

5. Conséquences de la transformation de Lorentz

On considère un référentiel \mathcal{R} , inertiel, et un second référentiel \mathcal{R}' , en translation uniforme par rapport à \mathcal{R} à la vitesse $\mathbf{v} = \mathbf{v}_{\mathcal{R}'/\mathcal{R}}$. On choisit dans chaque référentiel une origine (O et O', respectivement), et on munit les deux référentiels d'axes orthonormés (Ox, Oy, Oz) et (O'x', O'y', O'z') orientés de la même manière, et de telle façon que le mouvement relatif des deux référentiels soit selon Ox et O'x': $\mathbf{v} = \mathbf{v}_{\mathcal{R}'/\mathcal{R}} = v \, \mathbf{e}_x$.

Enfin, on choisira l'origine des temps dans les deux référentiels de telle sorte que lorsque les origines O et O' se confondent, on a t=t'=0.

5.1 — Écrivez les équations de la transformation de Lorentz qui permettent de passer des coordonnées d'un événement M dans le référentiel \mathcal{R} aux coordonnées du même événement M dans le référentiel \mathcal{R}' . De même, écrivez les équations de la transformation inverse. Vérifiez qu'en appliquant successivement ces deux transformations, on obtient bien l'identité.

Si on considère un événement M de coordonnées $(ct,\mathbf{r})=(ct,x,y,z)$ dans le référentiel \mathcal{R} , on obtiendra ses coordonnées spatio-temporelles $(ct',\mathbf{r}')=(ct',x',y',z')$ dans le référentiel \mathcal{R}' en utilisant les équations de la transformation de Lorentz. Dans la configuration considérée, elles s'écrivent :

$$\begin{cases} t' &= \frac{t - vx/c^2}{\sqrt{1 - \frac{v^2}{c^2}}} \\ x' &= \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}} \end{cases} \text{ i.e. } \begin{cases} ct' &= \gamma \left(ct - \beta x \right) \\ x' &= \gamma \left(x - \beta ct \right) \\ y' &= y \\ z' &= z \end{cases} \text{ et réciproquement } \begin{cases} ct &= \gamma \left(ct' + \beta x' \right) \\ x &= \gamma \left(x' + \beta ct' \right) \\ y &= y' \\ z &= z' \end{cases}$$

avec

$$\beta = \frac{v}{c}$$
 et $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$.

On peut mettre ces équations sous une forme matricielle :

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma & +\beta\gamma & 0 & 0 \\ +\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix}$$

De manière immédiate, on peut vérifier que ces deux transformations sont bien l'inverse l'une de l'autre :

$$\begin{pmatrix} \gamma & +\beta\gamma & 0 & 0 \\ +\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \gamma^2(1-\beta^2) & 0 & 0 & 0 \\ 0 & \gamma^2(1-\beta^2) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\operatorname{car} \gamma^2 (1 - \beta^2) = 1.$$

5.2 — Supposons que deux événements successifs A et B se produisent au même point $x'_A = x'_B$ dans le référentiel \mathcal{R}' . Dans \mathcal{R}' , ces deux événements sont séparés par une durée $\Delta t' = 1$ s. Que vaut la durée entre les événements A et B dans le référentiel \mathcal{R} ?

Faites de même pour deux événements C et D qui se produisent cette fois au même point $x_C = x_D$ dans \mathcal{R} , séparés par 1 s dans \mathcal{R} . Commentez.

Connaissant les coordonnées (ct'_A, x'_A) et (ct'_B, x'_B) des événements A et B dans \mathcal{R}' , on peut calculer par la transformation de Lorentz leurs coordonnées temporelles t_A et t_B dans le référentiel \mathcal{R} ,

$$ct_A = \gamma \left(ct'_A + \beta x'_A \right) \qquad ct_B = \gamma \left(ct'_B + \beta x'_B \right).$$

La différence entre ces deux équations donne immédiatement

$$c(t_B - t_A) = \gamma \left[c(t'_B - t'_A) + \beta (x'_B - x'_A) \right]$$

Soit,

$$t_B - t_A = \gamma(t_B' - t_A') > (t_B' - t_A')$$
 i.e. $\Delta t_{A \to B} = \gamma \Delta t_{A \to B}' > \Delta t_{A \to B}'$

 $\operatorname{car} x'_A = x'_B$.

Si $\Delta t'_{A \to B} = 1$ s, et si $\beta = 3/5$, on trouve

$$\gamma = 1.25$$
 $\Delta t = \gamma \Delta t' = 1.25 \,\mathrm{s}$

et la durée entre les événements A et B dans le référentiel \mathcal{R} est plus longue (1.25 s) : c'est l'effet relativiste de dilatation du temps.

Si on procède de même pour les événements C et D qui ont lieu au même point dans le référentiel \mathcal{R} , on trouve cette fois dans \mathcal{R}' :

$$ct'_C = \gamma (ct_C - \beta x_C)$$
 $ct'_D = \gamma (ct_D - \beta x_D).$

Ce qui donne cette fois :

$$c(t'_D - t'_C) = \gamma [c(t_D - t_C) - \beta(x_D - x_C)]$$

Soit,

$$t'_D - t'_C = \gamma(t_D - t_C) > (t_C - t_D)$$
 i.e. $\Delta t'_C = \gamma \Delta t > \Delta t$

 $\operatorname{car} x_C = x_D$.

La durée écoulée entre les événements C et D dans le référentiel \mathcal{R}' est plus longue (1.25 s) que celle mesurée dans le référentiel \mathcal{R} . On constate ainsi que l'effet de dilatation des temps est symétrique.

5.3 — Imaginons deux événements E et F qui se produisent au même instant t, en deux points différents d'abscisses x_E et x_F , avec $x_E < x_F$ dans le référentiel \mathcal{R} . Ces deux événements sont-ils aussi simultanés dans le référentiel \mathcal{R}' ?

Qu'en est-il dans un référentiel \mathcal{R}'' qui se déplace à la vitesse $(-\mathbf{v})$ par rapport au référentiel \mathcal{R} ? Commentez.

En procédant comme précédemment, on peut calculer les coordonnées temporelles des événements E et F dans \mathcal{R}' ,

$$ct'_{E} = \gamma (ct_{E} - \beta x_{E})$$
 $ct'_{F} = \gamma (ct_{F} - \beta x_{F}).$

Ce qui donne, en soustrayant la première équation de la seconde,

$$c(t_F' - t_E') = \gamma \left[c(t_F - t_E) - \beta (x_F - x_E) \right] = -\beta \gamma (x_F - x_E)$$
 avec $x_F > x_E$

Soit,

$$\Delta t'_{E \to F} = t'_F - t'_E = -\gamma \frac{v}{c} (x_F - x_E) < 0.$$

Autrement dit, dans le référentiel \mathcal{R}' , les deux événements ne sont plus simultanés, et l'événement F se produit avant l'événement E.

Si on tiens le même raisonnement dans un référentiel \mathcal{R}'' qui se déplace à la vitesse -v par rapport à \mathcal{R} , on obtiendra un résultat similaire, mais pour lequel il faut remplacer v par -v dans l'expression précédente :

$$\Delta t''_{E \to F} = t''_F - t''_E = +\gamma \frac{v}{c} (x_F - x_E) > 0.$$

Et cette fois, dans le référentiel \mathbb{R}'' , l'événement F se produit *après* l'événement E.

Ainsi, le concept de simultanéité est relatif, et lié à un référentiel donné : deux événéments simultanés dans un référentiel ne le sont pas forcément dans un autre référentiel. De plus, on peut construire des situations où l'ordre temporel des événements dépend du référentiel dans lequel on se place...

5.4 — Considérons un objet de longueur ℓ au repos dans \mathcal{R} . La mesure de sa longueur consiste à repérer la position des extrémités M et N de cet objet, au même instant, dans le référentiel où on effectue la mesure. Quelle longueur trouve-t-on dans \mathcal{R} ? Et dans \mathcal{R}' ?

Dans le référentiel \mathcal{R} , l'objet est immobile, et la trajectoire de ses extrémités est : $x_M(t) = x_M(0) =$ constante et $x_N(t) = x_M(0) + \ell$. Sa longueur est naturellement ℓ (longueur propre de l'objet).

Appliquons la transformation de Lorentz, à un instant t' dans le référentiel \mathcal{R}' :

$$\begin{cases} x_M = \gamma (x'_M + \beta ct') \\ x_N = \gamma (x'_N + \beta ct') \end{cases}$$

En soustrayant la première équation de la seconde, et en se plaçant *au même temps t'* dans le référentiel \mathcal{R}' , on trouve :

$$\ell = x_N - x_M = \gamma \left(x_N' - x_M' \right) = \gamma \ell'$$
 soit $\ell' = \frac{1}{\gamma} \ell \leqslant \ell$.

La longueur ℓ' mesurée de l'objet dans \mathcal{R}' est ainsi plus courte que dans le référentiel \mathcal{R} où l'objet est au repos; numériquement, en prenant $\ell=1\,\mathrm{m}$ et v=3c/5, on trouve $\ell'=0.8\,\mathrm{m}$. C'est l'effet relativiste de contraction des longueurs, parfois aussi appelée contraction de Lorentz-FitzGerald. L'effet est bien sûr symétrique : un objet de longueur ℓ immobile dans le référentiel \mathcal{R}' paraîtra contracté du même facteur dans le référentiel \mathcal{R} .

Dans tout l'exercice, on pourra prendre v = 3c/5 pour les applications numériques.

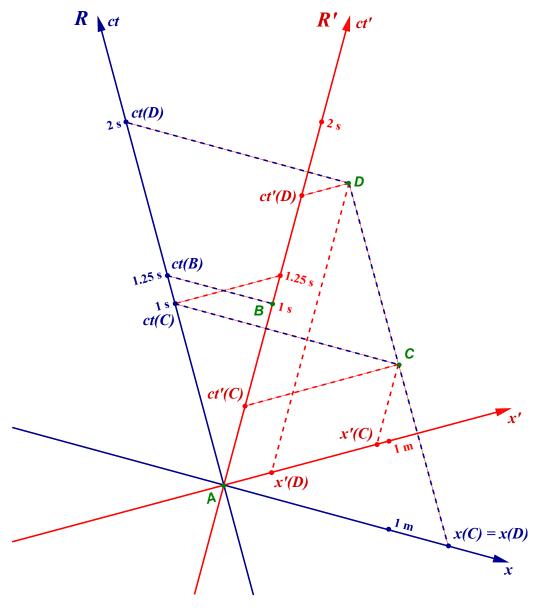


FIGURE 7 – Dilatation du temps (diagramme de Loedel) : les événements A (ici choisi à l'origine) et B qui ont lieu à la même position $x'_A = x'_B$ dans le référentiel \mathcal{R}' s'y produisent avec $\Delta t' = 1$ s d'écart. Dans le référentiel \mathcal{R} , $\Delta t = t_B - t_A = 1.25$ s est plus grand. Réciproquement, les événements C et D sont séparés par une seconde dans \mathcal{R} , et par 1.25 seconde dans \mathcal{R}' .

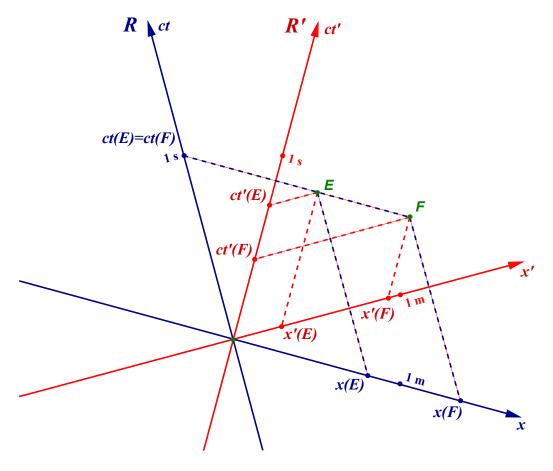


FIGURE 8 – Relativité du concept de simultanéité (diagramme de Loedel) : les événements E et F sont simultanés dans le référentiel \mathcal{R} . Dans le référentiel \mathcal{R}' , $\Delta t' = t_F' - t_E' < 0$: autrement dit, l'événement F se produit avant l'événement E.

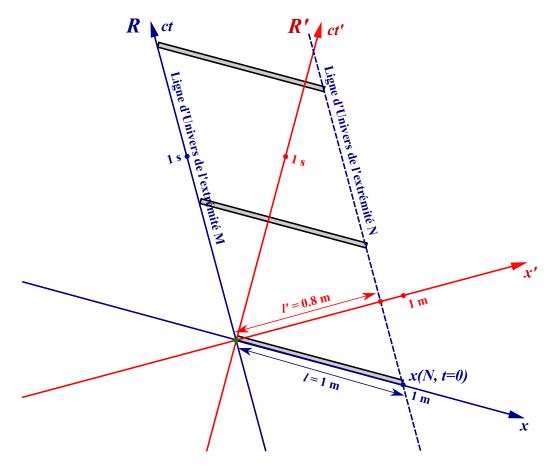


FIGURE 9 – Contraction des longueurs (diagramme de Loedel) : L'objet au repos dans $\mathcal R$ y possède une longueur ℓ . On a représenté ici la ligne d'univers de ses extrémités, M et N. La région d'espacetemps délimitée par ces deux lignes d'univers est le tube d'univers de l'objet, c'est à dire le volume d'espace-temps qu'il occupe au fur et à mesure que le temps s'écoule. La mesure de la longueur du même objet dans le référentiel $\mathcal R'$ consiste à repérer la position de ses extrémités au même instant t' on effectue ainsi une coupe de son tube d'espace-temps à un instant t' donné (à t'=0 sur le dessin). On trouve une longueur $\ell'=\ell/\gamma\leqslant\ell$ plus courte que dans le référentiel $\mathcal R$ (qui est aussi ici le référentiel propre de l'objet).

6. À la croisée des destinées : lignes d'univers et diagrammes de Minkowski

L'objectif de cet exercice est de présenter un autre type de diagrammes d'espace-temps, parfois désignés comme "diagrammes de Minkowski". Ces diagrammes sont plus délicats à utiliser car la graduation des axes demande quelques précautions.

Leia et Luke se déplacent avec une vitesse relative constante v. L'axe $\mathbf{e_x}$ des abcisses de Leia est orienté selon la vitesse de Luke, l'axe $\mathbf{e_x}'$ des abcisses de Luke étant opposé à la vitesse de Leia.

- **6.1** Tracez les lignes d'univers, c'est à dire les lignes constituées de l'ensemble des événements des vies respectives de Leia et de Luke :
 - (i) sur un graphe d'espace-temps (x,t) dans le repère de Leia.
 - (ii) sur un graphe d'espace-temps (x', t') dans le repère de Luke.

Luke et Leia mettent leurs montres à t=t'=0 lorsqu'ils se croisent : autrement dit, x=x'=0 quand t=t'=0.

Pour un événément de coordonnées (ct, x, y, z) dans \mathcal{R} , ses coordonnées deviennent (ct', x', y', z') dans \mathcal{R}' avec (transformation de Lorentz):

$$\begin{cases}
ct' = \gamma (ct - \beta x) \\
x' = \gamma (x - \beta ct) \\
y' = y \\
z' = z
\end{cases}$$
 et, réciproquement
$$\begin{cases}
ct = \gamma (ct' + \beta x') \\
x = \gamma (x' + \beta ct') \\
y = y' \\
z = z'
\end{cases}$$

Construisons le diagramme d'espace-temps dit "de Minkowski" étape par étape.

On place traditionnellement l'axe d'espace (Ox) en abscisse, et l'axe du temps (Oct) en ordonnée. L'axe des temps t' du référentiel \mathcal{R}' se confond avec la *ligne d'Univers* de Luke; c'est l'ensemble des points-événements pour lesquels x'=0. D'après ce qui précède,

$$x'=0$$
 implique $\gamma(x-\beta ct)=0$ i.e. $x=\beta ct$ ou encore $ct=\frac{1}{\beta}x$

ce qui correspond à une droite de pente $+1/\beta$ (en général β est petit devant 1, et par conséquent $1/\beta$ est grand), passant par l'origine.

De la même manière, l'axe des x' correspond à l'ensemble des points-événements pour lesquels t'=0, ce qui implique :

$$t' = 0$$
 implique $\gamma(ct - \beta x) = 0$ i.e. $ct = \beta x$.

On peut ainsi tracer les axes Ox' et Oct' dans le repère (Ox, Oct) (fig. 10, haut).

En procédant de même cette fois dans le repère (Ox', Oct'), on montre que l'axe des t correspond à la droite $ct' = -(1/\beta)x'$, et que l'axe des x est la droite $ct' = -\beta x$ dans le repère (Ox', Oct') (fig. 10, bas).

6.2 — Représentez, sur le graphe (x,t), deux événements A et B. Calculer les intervalles de coordonnées Δt , Δx , Δy , Δz entre A et B, pour Leia, en fonction des intervalles $\Delta t'$, $\Delta x'$, $\Delta y'$, $\Delta z'$ pour Luke. Calculer $c^2(\Delta t')^2 - (\Delta x')^2 - (\Delta y')^2 - (\Delta z')^2$.

Voir figure 10.

La transformation de Lorentz nous donne :

$$\begin{cases} c\Delta t' = \gamma \left(c\Delta t - \beta \Delta x \right) \\ \Delta x' = \gamma \left(\Delta x - \beta c\Delta t \right) \\ \Delta y' = \Delta y \\ \Delta z' = \Delta z \end{cases}$$
 et
$$\begin{cases} c\Delta t = \gamma \left(c\Delta t' + \beta \Delta x' \right) \\ \Delta x = \gamma \left(\Delta x' + \beta c\Delta t' \right) \\ \Delta y = \Delta y' \\ \Delta z = \Delta z' \end{cases}$$

Et, de manière immédiate,

$$c^{2}(\Delta t')^{2} - (\Delta x')^{2} - (\Delta y')^{2} - (\Delta z')^{2} = c^{2}(\Delta t)^{2} - (\Delta x)^{2} - (\Delta y)^{2} - (\Delta z)^{2}.$$

par invariance de $(\Delta s)^2 = c^2(\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2$ (cf. exercice précédent).

6.3 — Représentez, sur le graphe (x,t), deux événements C et D de la vie de Luke. Calculez la valeur de l'intervalle Δt entre C et D pour Leia, en fonction de $\Delta t'$, pour Luke, et de la vitesse de celui-ci par rapport à celle-là. Pour donner une idée de l'effet en question, envisagez le cas v=3c/5, et $\Delta t'=1$ s.

Comme vu précédemment, on aura :

$$c\Delta t = \gamma \left(c\Delta t' + \beta \Delta x' \right)$$
 i.e. $\Delta t = \gamma \left(\Delta t' + \frac{\beta \Delta x'}{c} \right)$

Comme les événements C et D se produisent tous deux en x'=0, sur la ligne d'univers de Luke, on a $\Delta x'=0$ et par conséquent,

$$\Delta t = \gamma \Delta t' = \gamma \Delta \tau$$

où τ est le temps propre de Luke.

Pour v = 3c/5, et $\Delta t' = 1$ s, on trouve numériquement :

$$\gamma(v) = \frac{5}{4} = 1.25$$
 et $\Delta t = 1.25$ s.

Deux événements séparés d'une seconde dans le référentiel de Luke apparaissent ainsi séparés de 1.25 s dans le référentiel de Leia ("dilatation du temps").

Bien évidemment, la situation est symétrique : deux événements séparés d'une seconde dans le référentiel de Leia apparaîtront aussi comme séparés de 1.25 s dans le référentiel de Luke (absence de référentiel privilégié). Malgré les apparences, il n'y a là aucune contradiction.

Dans cette description élémentaire, les deux référentiels sont galiléens, donc en translation uniforme l'un par rapport à l'autre, les deux protagonistes ne pourront jamais se recroiser et comparer le temps écoulé à leurs horloges respectives.

Pour que les deux personnages puissent de nouveau se croiser, il est nécessaire que l'un des deux fasse demi-tour, mais dans ce cas son référentiel n'est plus galiléen (cf. l'étude détaillée du "paradoxe" des jumeaux).

6.4 — Luke tient un sabre laser tendu vers l'avant (c'est à dire selon l'axe $\mathbf{e_x}'$). Déterminez et représentez la ligne d'univers de la pointe du sabre de Luke sur le graphe (x,t). Quelle définition peut adopter Leia pour la grandeur qu'elle va appeler "longueur du sabre de Luke"? Calculez cette longueur $\Delta \ell$ en fonction de la longueur $\Delta \ell'$ pour Luke et de sa vitesse. Envisagez le cas v=3c/5, $\Delta \ell'=1\,\mathrm{m}$.

Une mesure de longueur s'effectue en repérant *simultanément* les positions des deux extrémités de l'objet à mesurer. Comme la simultanéité est un concept relatif en relativité restreinte, des observateurs placés dans des référentiels différents mesurent ainsi des longueurs différentes pour un même objet (fig. 11).

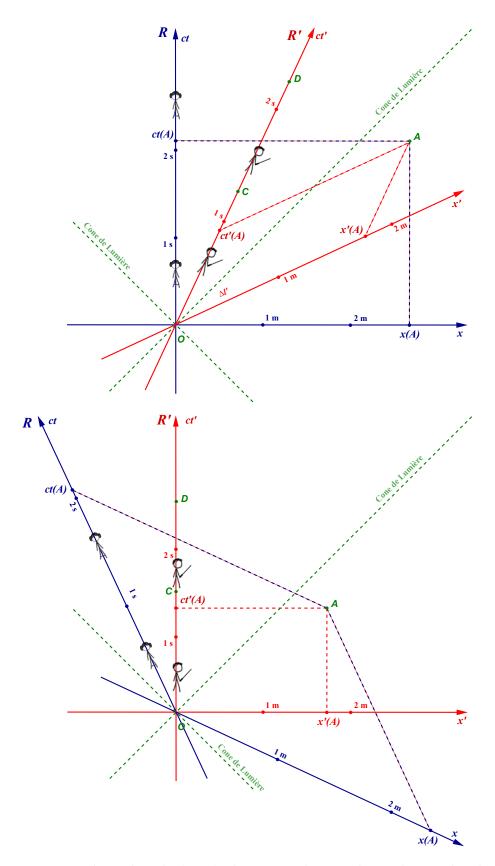


FIGURE 10 – Diagrammes de Minkowski. (Haut) : diagramme du point de vue de Leia, dans le référentiel \mathcal{R} ; (Bas) : diagramme du point de vue de Luke, dans le référentiel \mathcal{R}' .

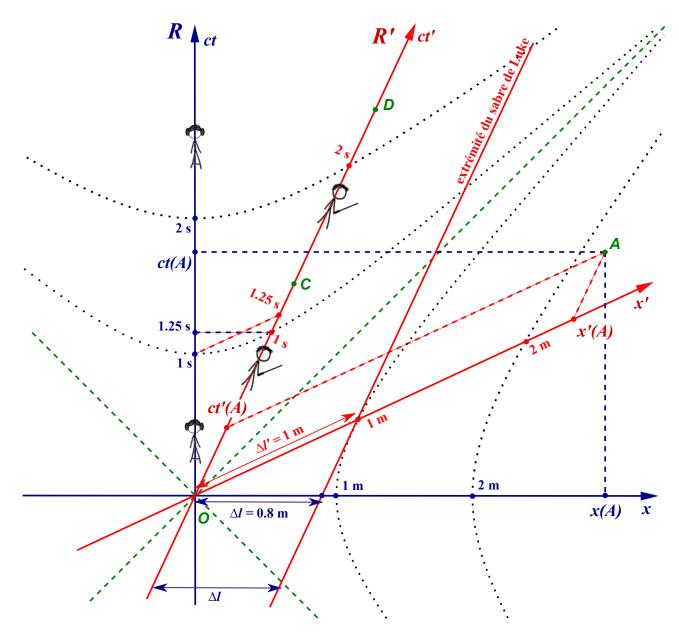


FIGURE 11 – Diagramme d'espace-temps (diagramme de Minkowski). Lignes d'univers de Leia, restée en x=0 (en bleu, axe Oct) et de Luke, en translation uniforme à la vitesse $v=v(\mathcal{R}'/\mathcal{R})$ par rapport à Leia. Les familles d'hyperboles $t^2-x^2/c^2=$ cte et $x^2-c^2t^2=$ cte permettent de graduer les axes. On constate ainsi que deux événements de la vie de Luke séparés d'une seconde dans son référentiel (temps propre) sont séparés par 1.25 s dans le référentiel \mathcal{R} de Leia. On constate aussi qu'un objet de longueur $\Delta\ell'=1$ m dans \mathcal{R}' ne mesure que $\Delta\ell=0.8$ m dans \mathcal{R} . Luke aboutira bien sûr à des conclusions similaires pour des événements de la vie de Leia et pour un objet fixe dans \mathcal{R}' (tous les référentiels galiléens étant équivalents).

Dans le référentiel \mathcal{R}' , la trajectoire de Luke est donnée par $x'_{\text{Luke}}(t') = 0$, tandis que celle de la pointe de son sabre est $x'_{\text{pointe}}(t) = \Delta \ell'$.

Si on utilise la transformation de Lorentz, on peut écrire, à tout instant t dans $\mathcal R$:

$$\begin{cases} x'_{\text{Luke}} = \gamma (x_{\text{Luke}} - \beta ct) \\ x'_{\text{pointe}} = \gamma (x_{\text{pointe}} - \beta ct) \end{cases}$$

Si on se place à un instant t donné dans le référentiel de Leia (simultanéité dans \mathcal{R}), on peut alors écrire (l'expression se simplifie car il s'agit du même instant t):

$$\Delta \ell' = x'_{\text{pointe}} - x'_{\text{Luke}} = \gamma \left(x_{\text{pointe}} - x_{\text{Luke}} \right) = \gamma \Delta \ell$$
 soit $\Delta \ell = \frac{1}{\gamma} \Delta \ell' \leqslant \Delta \ell'$

Numériquement, pour v=3c/5, et $\Delta \ell'=1\,\mathrm{m}$, on obtient :

$$\Delta \ell = \frac{1}{\gamma} \Delta \ell' = 0.8 \,\mathrm{m} < 1 \,\mathrm{m}$$

C'est l'effet de "contraction des longueurs". De la même manière, l'effet est symétrique : un objet de 1 m de long immobile dans le référentiel de Leia apparaîtra contracté du même facteur $1/\gamma$ pour Luke.

Pour la dilatation du temps comme pour la contraction des longueurs, on parle parfois d'un "effet de perspective dans l'espace-temps".

- **6.5** Tracez sur le graphe (x, t):
 - (i) quelques lignes d'univers du réseau x' = cte pour Luke.
 - (ii) quelques lignes du réseau t' = cte pour Luke.

Cf. figure 11.

6.6 — Quelles sont, sur ce graphe, les lignes qui représentent les axes t' et x' de Luke? Soit un événement A. Représentez, sur le graphe (x,t), ses coordonnées pour Leia et pour Luke respectivement.

Cf. figure 11.

- **6.7** Reste à graduer les axes t' et x' sur le graphe (x, t).
 - (i) Représentez sur le graphe la partie t>0 de l'hyperbole $t^2-x^2/c^2=1\,\mathrm{s}^2$. à quelle valeur de t correspond son intersection avec l'axe t? A quelle valeur de t' correspond son intersection avec la représentation de l'axe t'?
 - (ii) Mêmes questions à propos de l'hyperbole $x^2-c^2t^2=1\,\mathrm{m}^2$ et de ses intersections avec les axes x et x'.

Considérons la branche t>0 de l'hyperbole d'équation $t^2-x^2/c^2=1\,\mathrm{s}^2$. De manière immédiate, l'intersection avec l'axe des t se produit lorsque x=0, ce qui correspond à la graduation $t=1\,\mathrm{s}$ (ou plus précisément $ct=c\times 1\,\mathrm{s}$).

Par ailleurs, on a, par invariance de l'intervalle d'espace-temps, pour n'importe quel point événement E de coordonnées (ct, x) dans \mathcal{R} et (ct', x') dans \mathcal{R}' (on considère ici l'intervalle entre E et l'origine) :

$$t'^2 - x'^2/c^2 = t^2 - x^2/c^2 = 1 s^2$$

L'intersection de l'hyperbole $t^2-x^2/c^2=1\,\mathrm{s}^2$ avec l'axe des t' a lieu quand x'=0, et par conséquent quand $t'^2=t^2-x^2/c^2=1\,\mathrm{s}^2$, c'est à dire pour $t'=1\,\mathrm{s}$. Ce qui nous permet de graduer l'axe des t' (fig. 11).

On peut montrer de même que l'hyperbole $x^2 - c^2t^2 = 1 \,\mathrm{m}^2$ coupe l'axe des x en $x = 1 \,\mathrm{m}$, et coupe aussi l'axe des x' en $x' = 1 \,\mathrm{m}$, ce qui permet de graduer l'axe des x'.

6.8 — Représentez sur le graphique :

- (i) le temps t de l'événement (t' = 1 s, x' = 0) de la vie de Luke.
- (ii) la longueur ℓ attribuée au sabre de Luke par Leia.

Voir figure 11. La figure 12 présente la même situation décrite dans une variante de ces diagrammes d'espace-temps, les diagrammes symétriques de Loedel.

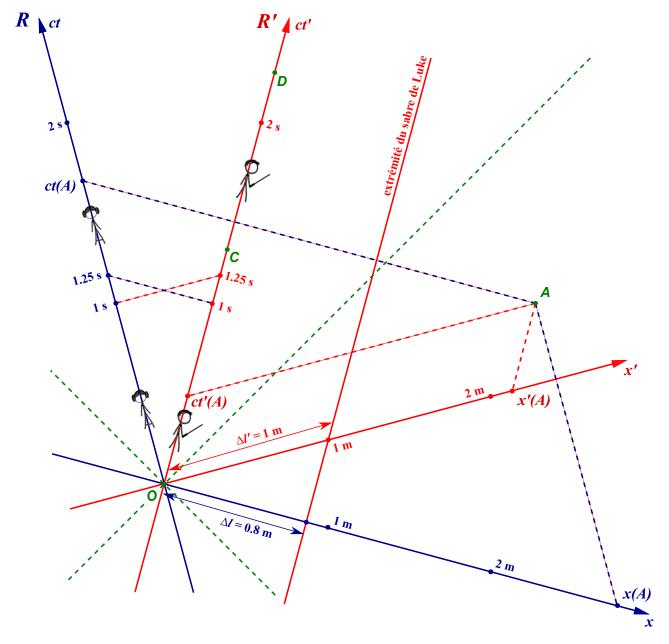


FIGURE 12 – Diagramme d'espace-temps, variante dite "diagramme de Loedel". Contrairement aux diagrammes dits "de Minkowski", ce type de diagramme d'espace-temps présente l'avantage de ne pas favoriser graphiquement l'un des référentiels par rapport à l'autre, ce qui est plus conforme à la symétrie effective entre les référentiels. Les graduations sont aussi identiques sur tous les axes, ce qui en simplifie la construction et l'interprétation. Dans la suite des exercices, nous utiliserons ces deux types de diagrammes.

7. Temps de vie des muons atmosphériques

Les muons 2 sont des particules élémentaires instables, notées μ : le muon μ^- , sorte de cousin plus lourd de l'électron, et son anti-particule, l'anti-muon μ^+ . Sur Terre, ils sont essentiellement produits par l'interaction de rayons cosmiques de haute énergie avec la partie supérieure de l'atmosphère terrestre, qui, par collisions successives avec les molécules de l'air, engendrent des gerbes de particules descendantes (fig. 13). Parmi les particules produites (pions, muons, etc), ce sont principalement les muons qui atteignent le sol (les pions ont une durée de vie trop brève). Le flux de muons au niveau de la mer est approximativement de 170 muons par mètre carré et par seconde.

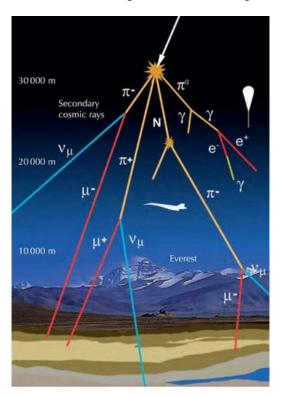


FIGURE 13 – Schéma (simplifié) d'une gerbe atmosphérique produite par un rayon cosmique de haute énergie.

Les muons sont instables et se désintègrent spontanément en un électron et deux neutrinos, selon la réaction :

$$\mu^- \longrightarrow e^- + \bar{\nu}_e + \nu_\mu$$

De même, l'anti-muon se désintègre symétriquement en un positon et deux neutrinos,

$$\mu^+ \longrightarrow e^+ + \nu_e + \bar{\nu}_\mu$$

La durée de vie moyenne des muons est $\tau=2.2\,\mu s$ au repos. Pour une population de muons donnée, le nombre de muons diminue avec le temps selon une loi exponentielle,

$$N(t) = N_0 e^{-t/\tau}.$$

où N_0 est le nombre de muons à l'instant t=0 choisi comme origine du temps. Au fur et à mesure de leur descente vers le sol, les muons des gerbes atmosphériques se désintègrent ainsi progressivement.

^{2.} On les a initialement appelés mu-mésons, ou encore mésotrons, avant de finalement les nommer "muons".

En 1941, Bruno Rossi (1905-1993), physicien italo-américain, et son assistant David Hall mesurent le flux de muons sur un dénivelé de 1624 m entre Echo Lake (3240 m d'altitude) et Denver (1616 m), en utilisant un dispositif de comptage à base de plaques métalliques (pour freiner les muons incidents) et de plusieurs compteurs Geiger-Müller. Ils constatent que le flux de muons ne décroît pas aussi rapidement qu'attendu lorsqu'on se rapproche du niveau de la mer [B. Rossi et D. B. Hall, Phys. Rev. 59, 223 (1941)].

La mesure sera refaite en 1962, par David H. Frisch (1918-1991) et James H. Smith au moyen d'un détecteur constitué de plaques de fer (toujours pour freiner les muons, mais aussi pour sélectionner une gamme de vitesse en choisissant une certaine épaisseur de fer) et de scintillateurs plastique : lorsqu'un muon freiné par les plaques de fer traverse le scintillateur, un peu de lumière est émise, et cette émission est détectée au moyen d'un photomultiplicateur. Si, de plus, le muon, ralenti, se désintègre dans le détecteur, un second signal signe la présence de l'électron produit. La présence de ces deux signaux successifs confirme que la particule incidente est bien un muon. De plus, dans ce cas la distribution des durées entre le signal du muon fortement ralenti et le signal de l'électron est une exponentielle décroissante, qui permet éventuellement de re-mesurer la durée de vie moyenne du muon au repos [D. H. Frisch et J. H. Smith, *Measurement of the Relativistic Time Dilation Using* μ -Mesons. American Journal of Physics 31(5), 342–355].

D. H. Frisch et J. H. Smith effectuent la mesure au sommet du Mont Washington (New Hampshire, États-Unis, 1916 m d'altitude), puis la refont de retour au MIT à Cambridge (Massachusetts), quasiment au niveau de la mer (env. 4 m d'altitude).

7.1 — Connaissant la durée de vie moyenne des muons, et en considérant que leur vitesse est très proche de celle de la lumière, estimez leur libre parcours moyen dans l'atmosphère (on néglige ici les éventuelles interactions avec l'air, peu dense).

Si on néglige les interactions avec les molécules de l'air, le libre parcours moyen est simplement le produit de la durée de vie moyenne et de la vitesse des muons,

$$\ell = c\tau = 299792458 \,\mathrm{m\cdot s^{-1}} \times 2.2 \times 10^{-6} \,\mathrm{s} \approx 660 \,\mathrm{m}.$$

7.2 — Frisch et Smith comptent 568 muons par heure au sommet du Mont Washington. Combien faut-il de temps aux muons pour parcourir verticalement la distance entre le sommet et le site proche du niveau de la mer? En supposant que l'efficacité de détection des muons de leur dispositif est constante, estimez numériquement le taux de muons attendus (par heure) au niveau de la mer.

Les muons parcourent la différence de hauteur entre le sommet et le MIT proche du niveau de la mer en $\Delta t = (1916\,\mathrm{m} - 4\,\mathrm{m})/c \approx 6.38\,\mu\mathrm{s}$.

Du fait de leurs désintégrations spontanées, le nombre de muons décroît selon $N(t)=N_0\,e^{-t/\tau}$; on s'attend au niveau de la mer à ce que le nombre de détections diminue de la même manière. On attend ainsi un taux de détection de :

$$N_{
m mer} = N_{
m Mt~Washington} imes e^{-\Delta t/ au} = 568\,{
m muons/h} imes e^{-6.38\,\mu{
m s}/2.2\,\mu{
m s}} pprox 31\,{
m muons/h}$$

7.3 — Frisch et Smith déplacent leur dispositif en bas de la montagne, et comptent cette fois 412 muons par heure au niveau de la mer. Interprétez ce résultat dans le cadre relativiste, dans le référentiel terrestre (supposé ici galiléen). Déduisez-en le facteur $\gamma(v)$ des muons, et la vitesse v des muons par rapport au sol.

La durée de vie moyenne du muon se comprend dans son référentiel propre. C'est cette grandeur que l'on obtient lorsqu'on effectue la mesure pour des muons quasiment à l'arrêt dans le détecteur

(car freiné par les épaisseurs de fer au-dessus). Si le référentiel du muon est en mouvement à une vitesse v importante, il faut tenir compte de l'effet relativiste de dilatation des temps. Ainsi, deux événements de la "vie" du muon séparés par un intervalle $\Delta \tau$ dans son référentiel propre seront séparés par un temps $\Delta t = \gamma(v)\Delta \tau > \Delta \tau$ dans le référentiel de l'observateur au repos (ici, celui des expérimentateurs). Dans le référentiel des expérimentateurs, la population de muons évolue ainsi selon une loi exponentielle modifiée :

$$N(t) = N_0 e^{-t/(\gamma(v)\tau)}.$$

où $\gamma(v)\tau$ est la durée de vie moyenne apparente des muons pour les observateurs au repos, étirée par l'effet de dilatation du temps.

On peut ainsi en déduire le facteur $\gamma(v)$ des muons et leur vitesse :

$$\frac{N_{\rm mer}}{N_{\rm Mt \ Washington}} = e^{-\Delta t/(\gamma(v)\tau)}$$

d'où

$$\gamma(v) = \frac{\Delta t}{\tau} \times \frac{1}{\ln N_{\rm Mt\,Washington} - \ln N_{\rm mer}} \approx \frac{6.38\,\mu{\rm s}}{2.2\,\mu{\rm s}} \times \frac{1}{\ln 568 - \ln 412} \approx 9.03$$

Ce qui permet d'en déduire la vitesse des muons détectés :

$$\beta = \frac{v}{c} = \sqrt{1 - \frac{1}{\gamma^2}} \approx 0.995 \qquad v \approx 0.995 c$$

Dans l'expérience de Frisch et Smith, la gamme de vitesse (et d'énergie) des muons qui s'arrêtent dans le scintillateur est déterminée par l'épaisseur choisie de fer placé au dessus du scintillateur : les muons qui vont moins vite sont arrêtés dans les blocs de fer et n'atteignent pas le scintillateur, tandis que ceux qui vont plus vite traversent le scintillateur sans s'y arrêter. Frisch et Smith ont déterminé qu'avec l'épaisseur de fer choisie, ils détectent les muons dont la vitesse est comprise entre $0.9950\,c$ et $0.9954\,c$ à leur entrée dans les blocs de fer.

7.4 — Interprétez le phénomène dans le référentiel propre des muons, où leur durée de vie moyenne est $\tau=2.2\,\mu s$.

Dans le référentiel propre du muon, sa durée de vie moyenne est bien $\tau=2.2\,\mu s$: par contre, la distance qu'il parcourt, à savoir la hauteur de la montagne, semble plus courte au muon, par l'effet de contraction relativiste des longueurs (dite aussi contraction de Lorentz-FitzGerald), et cette distance est réduite d'un coefficient $1/\gamma\approx 1/9.03$. La distance à parcourir étant plus courte (pour les muons, la montagne qui vient à leur rencontre est 9 fois plus petite que pour l'expérimentateur), la décroissance du nombre de muons est donc aussi plus lente (du même facteur obtenu à la question précédente).

L'expérience de David H. Frisch et James H. Smith a fait l'objet d'un film, *Time Dilation : An Experiment With Mu-Mesons* (1962), où Frisch et Smith présentent l'expérience au fur et à mesure de son exécution. Le film est disponible en ligne : https://www.youtube.com/watch?v=rbzt8gDSYIM

On sait aujourd'hui produire à volonté et manipuler des populations de muons pour réaliser des expériences de physique des particules, notamment pour effectuer des mesures de précision des propriétés des muons. L'un des dispositifs essentiels de ces expériences est l'anneau de stockage de muons ($muons\ storage\ ring$), petit accélérateur circulaire où les muons tournent à des vitesses très proches de c, ce qui permet d'y maintenir des populations de muons pendant des temps très longs, bien au-delà des $2.2\,\mu s$ de durée de vie moyenne des muons au repos (fig. 14).

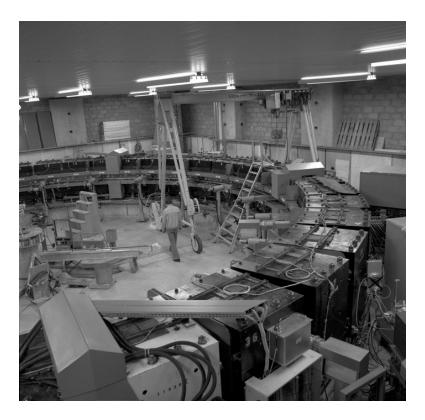
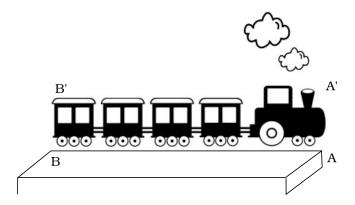


FIGURE 14 – Anneau de stockage de muons au CERN, "g-2 Muon Storage Ring", construit en 1974, utilisé notamment pour la mesure du moment magnétique "anormal" du muon (Photo CERN)

8. Contraction des longueurs et ordre temporel des événements

L'exercice suivant est un "classique académique": il n'existe bien évidemment pas de train suffisamment rapide pour que les effets relativistes soient raisonnablement mesurables. Cet exemple permet toutefois d'illustrer les effets de perspectives dans l'espace-temps. Il existe un certain nombre de variantes de ce problème, avec par exemple deux trains qui se croisent, etc. Une variante plus complexe est le problème célèbre de "la règle et du trou", traité plus loin dans une déclinaison cinématographique.

On considère un train de longueur L se déplaçant à la vitesse v et passant devant un quai de gare sans s'arrêter. La longueur du quai est aussi L et lors d'un précédent voyage, le train s'étant arrêté, le chef de gare et le chauffeur du train ont pu vérifier à l'arrêt que train et quai avaient exactement la même longueur.



Lors de ce passage par la station, le train se déplace à vitesse constante et ne s'arrête pas en gare. On considère donc 4 événements :

- P La tête du train A' coïncide avec l'arrière du quai B.
- Q La tête du train A' (avec la locomotive et le conducteur) coïncide avec l'avant du quai A (où se tient le chef de gare).
- R La queue du train B' coïncide avec l'arrière du quai B.
- S La queue du train B' coïncide avec l'avant du quai A.

Pour simplifier l'analyse, on supposera que le chef de gare (A) et le conducteur du train (A') synchronisent leurs horloges respectives à t=t'=0 lorsqu'ils se croisent. On supposera aussi qu'on dispose d'observateurs et d'horloges en queue de train et à l'arrière du quai, et que toutes les horloges d'un référentiel donné ont été préalablement synchronisées entre elles (par des échanges de signaux lumineux).

8.1 — Établissez les coordonnées spatio-temporelles des 4 événements P, Q, R et S dans les deux référentiels, \mathcal{R} (le quai) et \mathcal{R}' (le train). On pourra se servir de la transformation de Lorentz.

On appellera \mathcal{R} le référentiel du quai, et \mathcal{R}' celui du train.

Du fait du choix des coordonnées spatiales et temporelles dans les deux référentiels considérés, les coordonnées de l'événement Q (à savoir la coïncidence de l'avant du train A' avec la tête du quai A) sont, de manière immédiate, dans \mathcal{R} et dans \mathcal{R}' respectivement :

$$x_Q = 0$$
 $t_Q = 0$ et $x'_Q = 0$ $t'_Q = 0$

De même, les coordonnées spatiales des événements P, R et S sont immédiates :

$$x_P = x(B) = -L$$
 $x'_P = x'(A') = 0$
 $x_R = x(B) = -L$ $x'_R = x'(B') = -L$
 $x_S = x(A) = 0$ $x'_S = x'(B') = -L$

Pour déterminer les coordonnées temporelles de ces trois événements, on peut utiliser le fait que *le quai a pour longueur L dans le référentiel du quai, et le train a pour longueur L dans le référentiel du train.*

Ainsi, entre les événements $P:A'\equiv B$ et $Q:A'\equiv A$, l'avant du train A' a parcouru toute la longueur du quai, **qui mesure** L **dans le référentiel du quai** \mathcal{R} , à la vitesse v. L'intervalle de temps $\Delta t_{P\to Q}$ entre ces deux événements, **vu dans le référentiel du quai** \mathcal{R} , vaut donc $\Delta t(P\to Q)=L/v$. On en déduit la coordonnée temporelle de l'événement P dans le référentiel \mathcal{R} :

$$t_P = t_Q - \Delta t_{P \to Q} = 0 - L/v = -L/v$$

Puis, en utilisant la transformation de Lorentz, on établit la coordonnée t_P' du même événement, mais dans le référentiel du train \mathcal{R}' :

$$t_P' = \gamma \left(t_P - \frac{\beta x_P}{c} \right) = \gamma \left(-\frac{L}{v} + \frac{vL}{c^2} \right) = -\frac{L\gamma}{v} \left(1 - \frac{v^2}{c^2} \right) = -\frac{1}{\gamma} \frac{L}{v}$$

On peut tenir un raisonnement analogue pour l'intervalle de temps entre les événements $Q: A' \equiv A$ et $S: B' \equiv A$. Entre ces deux événements, l'avant du quai A a parcouru toute la longueur du train, qui mesure L dans le référentiel du train \mathcal{R}' , à la vitesse -v. L'intervalle de temps $\Delta t'_{O \to S}$ entre ces

deux événements, vu cette fois dans le référentiel du train \mathcal{R}' , vaut donc $\Delta t'_{Q \to S} = +L/v$. On en déduit la coordonnée temporelle de l'événement S cette fois dans le référentiel \mathcal{R}' :

$$t'_{S} = t'_{Q} + \Delta t'_{Q \to S} = 0 + L/v = +L/v$$

Puis, en utilisant la transformation de Lorentz inverse, on établit la coordonnée t_S du même événement dans le référentiel du quai \mathcal{R} :

$$t_S = \gamma \left(t_S' + \frac{\beta x_S'}{c} \right) = \gamma \left(\frac{L}{v} - \frac{vL}{c^2} \right) = \frac{L\gamma}{v} \left(1 - \frac{v^2}{c^2} \right) = +\frac{1}{\gamma} \frac{L}{v}$$

Enfin, on peut établir les coordonnées temporelles de l'événement R de deux manières : soit à partir de celles de l'événement P en raisonnant dans \mathcal{R}' , ou à partir de celles de S en raisonnant dans \mathcal{R} . Suivons cette dernière voie : entre les événements R et S, l'arrière du train S' a parcouru toute la longueur du quai, qui mesure S dans le référentiel du quai S, à la vitesse S . L'intervalle de temps S entre ces deux événements, vu cette fois dans le référentiel du quai S, vaut donc S0 en déduit la coordonnée temporelle de l'événement S1 dans le référentiel S2.

$$t_R = t_S - \Delta t_{R \to S} = \frac{1}{\gamma} \frac{L}{v} - L/v = \frac{L\gamma}{v} \left(\frac{1}{\gamma} - 1\right)$$

Puis, en utilisant la transformation de Lorentz, on établit la coordonnée t_R' du même événement dans le référentiel du train \mathcal{R}' :

$$t_R' = \gamma \left(t_R - \frac{\beta x_R}{c} \right) = \gamma \left(\frac{1}{\gamma} \frac{L}{v} - \frac{L}{v} + \frac{vL}{c^2} \right) = \frac{L\gamma}{v} \left[\frac{1}{\gamma} - \left(1 - \frac{v^2}{c^2} \right) \right] = \frac{L}{v} \left(1 - \frac{1}{\gamma} \right)$$

Les coordonnées des 4 événements considérés sont regroupées dans le tableau suivant :

Événement		$\mid \mathcal{R}$	$\mid \mathcal{R}' \mid$
$P:A'\equiv B$	A' B	$x_P = -L$ $t_P = -\frac{L}{v}$	$x_P' = 0$ $t_P' = -\frac{1}{\gamma} \frac{L}{v}$
$Q:A'\equiv A$	A' A	$x_Q = 0$ $t_Q = 0$	$x_Q' = 0$ $t_Q' = 0$
$R:B'\equiv B$	B' B	$x_R = -L$ $t_R = \frac{L}{v} \left(\frac{1}{\gamma} - 1 \right) < 0$	$x'_{R} = -L$ $t'_{R} = \frac{L}{v} \left(1 - \frac{1}{\gamma} \right) > 0$
$S: B' \equiv A$	B' A	$x_S = 0$ $t_S = \frac{1}{\gamma} \frac{L}{v}$	$x_S' = -L$ $t_S' = \frac{L}{v}$

Il est aussi possible d'établir les coordonnées temporelles de tous les événements en résolvant pour chaque événement le système de deux équations à deux inconnues (t, t') formé par les équations de la transformation de Lorentz, ce qui donne bien sûr le même résultat.

8.2 — Quelle est la longueur du train dans son référentiel \mathcal{R}' ? vu du quai (référentiel \mathcal{R})?

Dans son propre référentiel, la longueur du train est sa longueur propre, à savoir L. Vu dans le référentiel du quai, il apparaît contracté et sa longueur dans $\mathcal R$ est L/γ . C'est cohérent par exemple avec l'intervalle de temps entre les événements Q et S mesuré dans $\mathcal R$: le train a défilé devant l'avant du quai en un temps $L/(\gamma v)$, car sa longueur dans $\mathcal R$ est justement L/γ .

8.3 — Quelle est la longueur du quai vu dans le référentiel \mathcal{R}' du train?

De la même manière, le quai est contracté dans \mathcal{R}' et sa longueur y est L/γ .

8.4 — Commentez l'ordre des événements Q et R dans les 2 référentiels. Qu'en concluez-vous? Est-ce cohérent avec les points de vue des deux observateurs sur les longueurs du train et du quai?

On note que $t_R < 0$ dans le référentiel $\mathcal R$ du quai, tandis que $t_R' > 0$ dans le référentiel du train $\mathcal R'$. Autrement dit, la coïncidence de l'arrière du train avec celle de l'arrière du quai se produit **avant** celle de la tête du train avec l'avant du quai dans le référentiel du quai, mais elle se produit **après** dans le référentiel du train. L'ordre de ces deux événements s'inverse selon le référentiel considéré. C'est cohérent avec l'effet de contraction des longueurs : dans le référentiel du quai, le train est plus court que le quai et la coïncidence des extrémités arrières du quai et du train se produit donc avant celle de leurs extrémités avants ; au contraire, dans le référentiel du train, c'est le quai qui est plus court, et la concidence des extrémités arrières du quai et du train se produit après celle de leurs extrémités avants. Il n'y a là aucune contradiction.

8.5 — Quelle est nécessairement la nature de l'intervalle d'espace-temps \widetilde{QR} ? Quelles sont les conséquences en terme de causalité?

L'ordre des événements Q et R s'inversant entre les référentiels R et R', l'intervalle d'espace-temps \widetilde{QR} est nécessairement de **genre espace**. L'événements Q n'appartient pas au cône de lumière de l'événement R (et réciproquement), et il ne peut exister aucun lien causal entre ces deux événements.

On peut vérifier algébriquement que $\widetilde{QR}^2 < 0$. En effet,

$$\widetilde{QR}^2 = c^2 (t_R - t_Q)^2 - (x_R - x_Q)^2 = c^2 \frac{L^2}{v^2} \left(1 - \frac{1}{\gamma} \right)^2 - L^2 = L^2 \left[\frac{c^2}{v^2} \left(1 - \frac{1}{\gamma} \right)^2 - 1 \right].$$

$$\frac{1}{\gamma^2}=1-\beta^2 \qquad \text{d'où} \quad \beta^2=1-\frac{1}{\gamma^2}=\frac{\gamma^2-1}{\gamma^2} \qquad \text{et} \quad \frac{c^2}{v^2}=\frac{1}{\beta^2}=\frac{\gamma^2}{\gamma^2-1}.$$

En substituant dans l'expression de \widetilde{QR}^2 , cela donne :

$$\begin{split} \widetilde{QR}^2 &= L^2 \left[\frac{c^2}{v^2} \left(1 - \frac{1}{\gamma} \right)^2 - 1 \right] = L^2 \left[\frac{\gamma^2}{\gamma^2 - 1} \left(\frac{\gamma - 1}{\gamma} \right)^2 - 1 \right] \\ &= L^2 \left[\frac{(\gamma - 1)^2}{\gamma^2 - 1} - 1 \right] = L^2 \left[\frac{(\gamma - 1)^2}{(\gamma - 1)(\gamma + 1)} - 1 \right] = L^2 \left[\frac{\gamma - 1}{\gamma + 1} - 1 \right] = -\frac{2L^2}{\gamma + 1} < 0. \end{split}$$

8.6 — Tracez une représentation des tubes d'Univers du train et du quai dans les deux référentiels. Commentez.

La succession des événements qui se produisent lors du croisement du train et du quai est représentée sur les figures 15 (diagramme de Loedel) et 16 (diagramme de Minkowski).

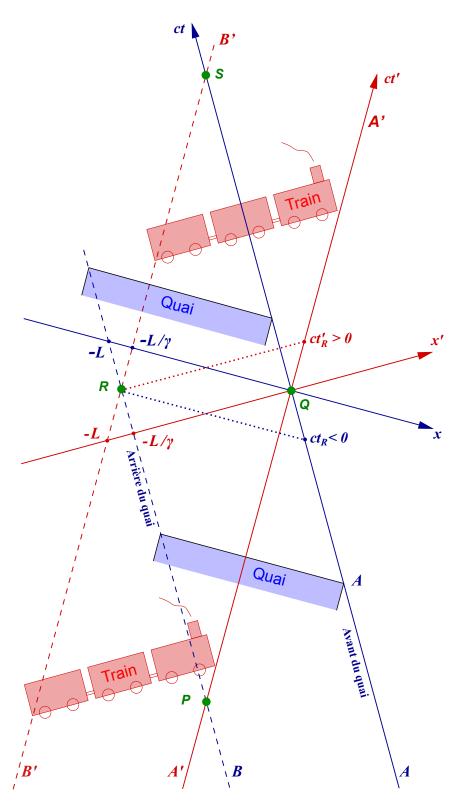


FIGURE 15 – Diagramme d'espace-temps (diagramme de Loedel). Trajectoires du quai (en bleu, dans \mathcal{R}) et du train (en rouge, dans \mathcal{R}'), avec la représentation de leurs "tubes d'Univers". On voit directement que la longueur du quai est L/γ dans le référentiel du train, et que réciproquement, la longueur du train est L/γ dans le référentiel du quai. L'inversion de l'ordre temporel des événements Q et R est aussi clairement visible.

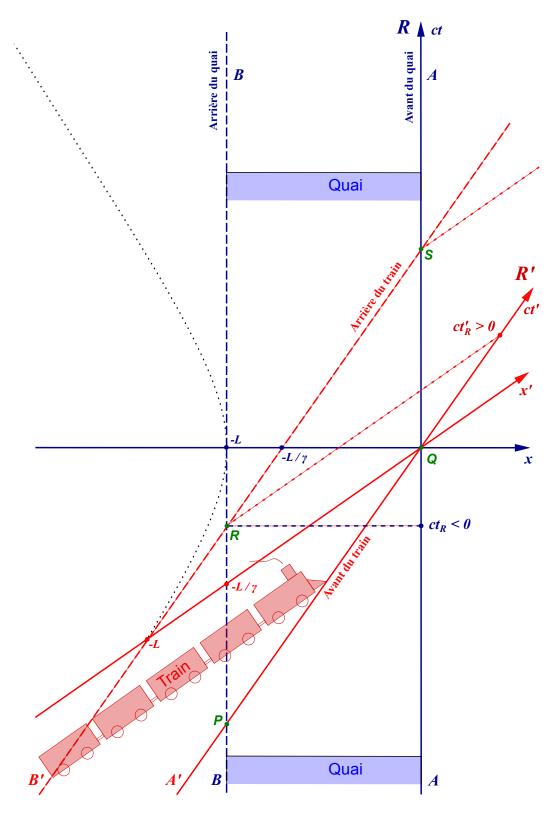


FIGURE 16 – Diagramme d'espace-temps (diagramme de Minkowski). Trajectoires du quai (en bleu, dans \mathcal{R}) et du train (en rouge, dans \mathcal{R}'), avec la représentation de leurs "tubes d'Univers". On voit directement que la longueur du quai est L/γ dans le référentiel du train, et que réciproquement, la longueur du train est L/γ dans le référentiel du quai. L'inversion de l'ordre temporel des événements Q et R est aussi visible. La branche x<0 de l'hyperbole $x^2-c^2t^2=L^2$ permet de graduer l'axe des x'.

9. Forme vectorielle des transformations de Lorentz

On considère deux référentiels inertiels \mathcal{R} et \mathcal{R}' . Le référentiel \mathcal{R}' est en translation uniforme par rapport à \mathcal{R} à une vitesse v. On adopte la convention habituelle : à t=t'=0, les origines O et O' se confondent. Par contre, on ne fait aucune hypothèse particulière sur l'orientation des axes des repères (Oxyz) et (O'x'y'z') des deux référentiels : leurs orientations sont quelconques.

En utilisant la propriété d'isotropie de l'espace, et en décomposant les vecteurs \mathbf{r} et \mathbf{r}' selon des composantes perpendiculaires et parallèles au mouvement, établissez les transformations de Lorentz sous forme vectorielle, c'est-à-dire donnant t' et \mathbf{r}' en fonction de t et \mathbf{r} et \mathbf{v} , la vitesse relative du repère (x',y',z') par rapport au repère (x,y,z).

NB : on pourra commencer par étudier le cas particulier où \mathcal{R}' se déplace le long de l'axe x de \mathcal{R} .

Lorsqu'on choisit les axes x et x' parallèles au mouvement relatif entre les deux référentiels, la transformation permettant de passer des coordonnées d'un événement dans \mathcal{R} à celles dans \mathcal{R}' s'écrit :

$$\begin{cases}
ct' &= \gamma (ct - \beta x) \\
x' &= \gamma (x - \beta ct) \\
y' &= y \\
z' &= z
\end{cases}$$

On peut généraliser au cas où les axes des repères sont quelconques. La transformation de la coordonnée temporelle s'écrit naturellement :

$$ct' = \gamma(\mathbf{v}) (ct - \boldsymbol{\beta} \cdot \mathbf{r})$$
 où $\boldsymbol{\beta} = \frac{\mathbf{v}}{c}$ $\gamma(\mathbf{v}) = \frac{1}{\sqrt{1 - \frac{\mathbf{v}^2}{c^2}}} = \frac{1}{\sqrt{1 - \boldsymbol{\beta}^2}}$

Pour les coordonnées d'espace $\mathbf{r}=(x,y,z)$, seule la composante $\mathbf{r}_{/\!/}$ de \mathbf{r} parallèle au mouvement relatif entre référentiel est affectée, selon la même transformation que pour x précédemment, tandis que la composante transverse \mathbf{r}_{\perp} n'est pas modifiée (comme y et z précédemment) :

$$\begin{cases} \mathbf{r'}_{/\!/} &= \gamma(\mathbf{v}) \left[\mathbf{r}_{/\!/} - \boldsymbol{\beta} c t \right] \\ \mathbf{r'}_{\perp} &= \mathbf{r}_{\perp} \end{cases}$$

où on peut écrire ${\bf r}$ comme la somme de ses composantes ${\bf r}_{/\!/}$ parallèle à ${m eta}$ et ${\bf r}_{\perp}$ orthogonale à ${m eta}$:

$$\mathbf{r} = \mathbf{r}_{/\!/} + \mathbf{r}_{\perp}$$
 où $\left\{ \begin{array}{ll} \mathbf{r}_{/\!/} &= \left[\mathbf{r} \cdot \frac{\boldsymbol{\beta}}{\beta} \right] \frac{\boldsymbol{\beta}}{\beta} = \frac{(\mathbf{r} \cdot \boldsymbol{\beta}) \boldsymbol{\beta}}{\beta^2} \\ \mathbf{r}_{\perp} &= \mathbf{r} - \mathbf{r}_{/\!/} \end{array} \right.$

Ce qui permet d'en déduire le vecteur position du même événement exprimé dans \mathcal{R}' :

$$\mathbf{r}' = \mathbf{r}'_{//} + \mathbf{r}'_{\perp} = \gamma(\mathbf{v}) \left[\mathbf{r}_{//} - \beta ct \right] + \mathbf{r}_{\perp}$$
(8)

$$= \mathbf{r} + \left[\gamma(\mathbf{v}) - 1\right] \mathbf{r}_{//} - \gamma(\mathbf{v}) \boldsymbol{\beta} ct = \mathbf{r} + \left[\gamma(\mathbf{v}) - 1\right] \frac{(\mathbf{r} \cdot \boldsymbol{\beta}) \boldsymbol{\beta}}{\beta^2} - \gamma(\mathbf{v}) \boldsymbol{\beta} ct$$
(9)

On en déduit la forme générale de la transformation de Lorentz, pour des repères choisis d'orientation quelconque dans \mathcal{R} et \mathcal{R}' :

$$\begin{cases} ct' = \gamma(\mathbf{v}) (ct - \boldsymbol{\beta} \cdot \mathbf{r}) \\ \mathbf{r}' = \mathbf{r} + [\gamma(\mathbf{v}) - 1] \frac{(\mathbf{r} \cdot \boldsymbol{\beta})\boldsymbol{\beta}}{\beta^2} - \gamma(\mathbf{v})\boldsymbol{\beta}ct = \mathbf{r} + [\gamma(\mathbf{v}) - 1] \frac{(\mathbf{r} \cdot \mathbf{v})\mathbf{v}}{v^2} - \gamma(\mathbf{v})\mathbf{v}t \end{cases}$$

10. Effet Doppler (relativiste)

Leia et Han ont une vitesse relative v constante. Leur coïncidence est prise, par tous deux, comme événement origine O. Leia choisit son axe x selon la vitesse de Han qui, lui, choisit son axe x' opposé à la vitesse de Leia. À intervalles réguliers à sa montre Han émet (événements O, E_1 , E_2 , E_3 , ...) des éclats lumineux que Leia reçoit (événements O, R_1 , R_2 , R_3 , ...).

10.1 — Représentez ce scénario (lignes d'univers de Leia, de Han, de la lumière et événements divers) sur un graphe d'espace-temps (x,t) dans le repère de Leia et sur un graphe d'espace-temps (x',t') dans le repère de Han.

10.2 — Indiquez sur le graphe de Leia les intervalles de coordonnées Δx et Δt entre les deux événements O et E_1 observés par Leia.

Voir figure 17.

10.3 — Calculez sans transformation de Lorentz, Δt en fonction de v et de l'intervalle $\Delta \tau$ entre les deux émissions O et E_1 à la montre de Han.

Pendant un intervalle de temps Δt , Han a parcouru la distance $\Delta x = v \Delta t$ dans le référentiel de Leia. En utilisant l'invariance de l'intervalle d'espace-temps entre les événements O et E_1 , on obtient :

$$\Delta s^2 = c^2 \Delta t^2 - \Delta x^2 = c^2 \Delta \tau^2$$
 soit $c^2 \Delta t^2 - v^2 \Delta t^2 = c^2 \Delta \tau^2$

D'où,

$$\Delta \tau^2 = \Delta t^2 \left(1 - \frac{v^2}{c^2} \right) = \frac{\Delta t^2}{\gamma^2}$$
 soit $\Delta t = \gamma \Delta \tau \geqslant \Delta \tau$.

10.4 — Calculez l'intervalle de temps Δt_R entre deux réceptions O et R_1 de ces éclats vus par Leia. Interprétez.

Le temps Δt_R écoulé entre deux réceptions par Leia est la somme du temps Δt entre deux émissions (mesuré dans son référentiel) et du temps nécessaire à la propagation de l'onde lumineuse pour parcourir la distance $\Delta x = v \Delta t$ qui la sépare de Han. On a ainsi :

$$\Delta t_R = \Delta t + \frac{\Delta x}{c} = \Delta t + \frac{v}{c} \Delta t = \gamma \Delta \tau \left(1 + \frac{v}{c} \right) = \Delta \tau \sqrt{\frac{c+v}{c-v}}$$

10.5 — Déduisez-en la relation entre la fréquence d'émission des signaux ν_E par Han et la fréquence de réception ν_R par Leia.

La fréquence d'émission ν_E (resp. de réception ν_R) est l'inverse de l'intervalle de temps entre deux émissions (resp. deux réceptions). On trouve ainsi :

$$u_R = \frac{1}{\Delta t_R} = \frac{1}{\Delta \tau} \sqrt{\frac{c-v}{c+v}}$$
 i.e. $u_R = \nu_E \sqrt{\frac{c-v}{c+v}}$

Qu'on peut encore écrire :

$$\nu_R = \nu_E \sqrt{\frac{1-\beta}{1+\beta}}.$$

La fréquence des signaux percue par Leia est donc inférieure à celle émise par Han qui s'éloigne d'elle. C'est l'effet Doppler relativiste, valable pour les signaux électromagnétiques.

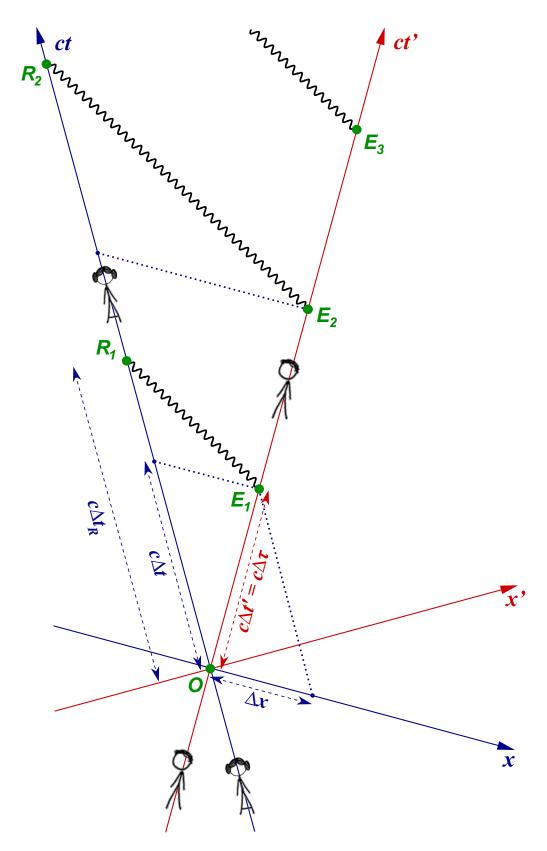


FIGURE 17 – Diagramme d'espace-temps (diagramme de Loedel). Trajectoires de Leia (en bleu, dans \mathcal{R}) et de Han (en rouge, dans \mathcal{R}'). La ligne d'Univers de Leia se confond avec l'axe ct, tandis que celle de Han se confond avec l'axe ct'.

Par comparaison, l'effet Doppler classique s'écrit :

$$\nu_R = \frac{c - v_R}{c - v_E} \nu_E$$

où c est la célérité des ondes considérées (vitesse du son par exemple) dans le milieu de propagation, tandis que v_E et v_R sont les vitesses de l'émetteur et du récepteur par rapport au référentiel du milieu de propagation des ondes. Ce résultat n'est évidemment pas transposable en relativité restreinte, notamment parce que la vitesse de la lumière est la même dans tous les référentiels, et qu'on ne peut pas définir de référentiel du milieu de propagation des ondes lumineuses.

11. L'attaque de l'Etoile Noire

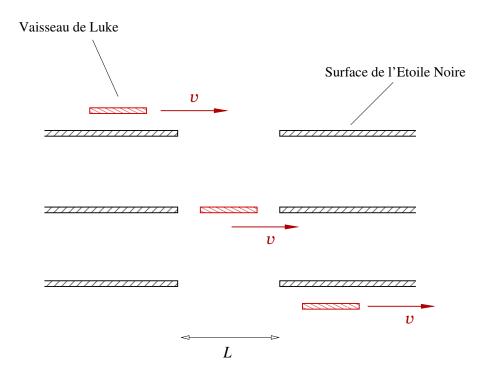


FIGURE 18 – Plan d'attaque de Luke, du point de vue du référentiel de l'Étoile Noire.

Pour détruire l'Étoile Noire, Luke envisage de survoler parallèlement sa surface afin de faire pénétrer discrètement son vaisseau (de longueur L) par un orifice de l'Étoile de même diamètre L (figure 18). Son vaisseau atteignant sans difficulté la vitesse $v=\sqrt{3}c/2\simeq 0.87c$, Luke compte profiter de la contraction des longueurs : dans le référentiel de l'Étoile Noire, son vaisseau apparaîtra plus court et pourra donc passer sans difficulté par l'ouverture de largeur L.

11.1 — Que vaut le facteur $\gamma(v)$ du vaisseau de Luke dans le référentiel de l'Étoile Noire (supposé galiléen)?

La vitesse du vaisseau étant $v=\sqrt{3}c/2$, le facteur $\gamma(v)$ correspondant vaut :

$$\gamma(v) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - \frac{3}{4}}} = 2.$$

11.2 — Dans le référentiel de l'Étoile Noire, quelle sera la longueur du vaisseau de Luke (assimilé à un segment de droite)? Le vaisseau pourra-t-il pénétrer par l'ouverture de diamètre *L*?

Dans le référentiel de l'Étoile Noire, le vaisseau de Luke apparaît plus court. Sa longueur est réduite d'un facteur $1/\gamma(v)$: la longueur du vaisseau dans le référentiel de l'Étoile Noire est par conséquent de $L/\gamma(v)$ soit L/2. Le vaisseau doit donc pouvoir passer facilement par le trou de diamètre L.

11.3 — L'amiral de la flotte fait toutefois remarquer que dans le référentiel de son vaisseau, c'est le trou à la surface de l'Étoile Noire qui paraîtra plus petit et que le plan de Luke est par conséquent voué à l'échec. Quelle est effectivement la longueur apparente du trou dans le référentiel \mathcal{R}' du vaisseau de Luke?

Dans le référentiel de Luke, la vitesse de la surface de l'Étoile Noire est -v, et le facteur γ associé vaut 2 (on suppose ici le mouvement du vaisseau parallèle à la surface). La longueur de l'orifice est donc réduite d'un facteur $1/\gamma(v)=1/2$, et vaut $L/\gamma(v)=L/2$. On peut alors légitimement se demander comment le vaisseau pourrait passer par le trou qui est deux fois plus petit que le vaisseau...

Afin de réconcilier les deux points de vue, on se propose de modéliser les trajectoires respectives du vaisseau et de la surface de l'Étoile Noire dans les deux référentiels suivants :

- Le référentiel \mathcal{R} représenté sur la figure 19 : dans \mathcal{R} , la surface de l'Étoile Noire se déplace en translation uniforme selon $\mathbf{e_z}$ avec une vitesse faible $u \ll c$. À t=0, la surface de l'Étoile Noire se confond avec le plan xOy. Dans ce même référentiel \mathcal{R} , le vaisseau de Luke se déplace sur l'axe Ox, à la vitesse $\mathbf{v}=v\mathbf{e_x}$, de telle sorte que le centre du vaisseau se trouve à l'origine O à t=t'=0.
- Le référentiel \mathcal{R}' solidaire du vaisseau de Luke, en translation uniforme par rapport au référentiel $\mathcal{R}: \mathbf{v}(\mathcal{R}'/\mathcal{R}) = v \, \mathbf{e_x}$. L'origine O' du référentiel \mathcal{R}' est prise au centre du vaisseau. Elle se confond avec O à t = t' = 0.

11.4 — Écrivez la transformation de Lorentz permettant de passer du référentiel \mathcal{R} au référentiel \mathcal{R}' . De même, écrivez la transformation inverse.

La transformation de Lorentz pour passer de \mathcal{R} à \mathcal{R}' s'écrit (avec $\beta = v/c$):

$$\begin{cases}
ct' &= \gamma (ct - \beta x) \\
x' &= \gamma (x - \beta ct) \\
y' &= y \\
z' &= z
\end{cases}$$
 et réciproquement
$$\begin{cases}
ct &= \gamma (ct' + \beta x') \\
x &= \gamma (x' + \beta ct') \\
y &= y' \\
z &= z'
\end{cases}$$

11.5 — Dans le référentiel \mathcal{R} , quelle est la position x(O') du centre du vaisseau en fonction du temps t? À t=0, que valent les abscisses des extrémités avant x(A') et arrière x(B') du vaisseau, dans le référentiel \mathcal{R} ? Au même instant t=0, que valent les abscisses x(P) et x(Q) des extrémités du trou? De ce point de vue, le vaisseau peut-il effectivement passer par le trou?

Dans le référentiel du vaisseau \mathcal{R}' , le centre du vaisseau est pris pour origine : x'(O') = 0. En appliquant la transformation de Lorentz, on a par ailleurs :

$$x'(O') = \gamma \left(x(O') - vt \right) = 0$$

D'où on déduit la position de O' dans \mathcal{R} ,

$$x(O') = vt$$

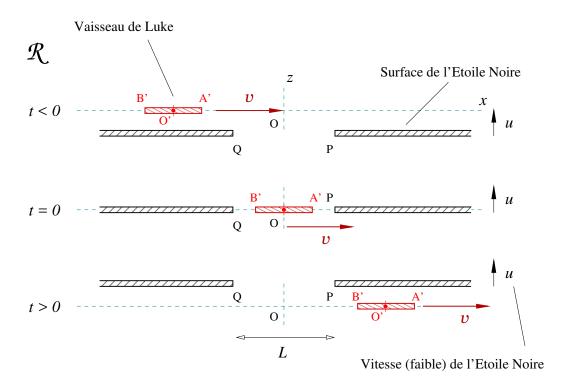


FIGURE 19 – Plan d'attaque de Luke pour détruire l'étoile noire, vu dans le référentiel \mathcal{R} . Dans ce référentiel, le vaisseau se déplace à la vitesse v le long de l'axe des x, tandis que la surface de l'Étoile Noire se déplace à la vitesse faible $u \ll c$ selon l'axe des z.

On peut raisonner de même pour les extrémités A' et B' du vaisseau. Dans le réferentiel du vaisseau \mathcal{R}' , on a :

$$x'(A') = +\frac{L}{2}$$
 et $x'(B') = -\frac{L}{2}$

En appliquant Lorentz, on a par ailleurs:

$$x'(A') = +\frac{L}{2} = \gamma \left(x(A') - vt \right) \qquad x'(B') = -\frac{L}{2} = \gamma \left(x(B') - vt \right)$$

D'où,

$$x(A') = +\frac{1}{\gamma}\frac{L}{2} + vt = +\frac{L}{4} + vt$$
 $x(B') = -\frac{1}{\gamma}\frac{L}{2} + vt = -\frac{L}{4} + vt$

Et en particulier, à t = 0,

$$x(A') = +\frac{1}{\gamma}\frac{L}{2} = +\frac{L}{4}$$
 $x(B') = -\frac{1}{\gamma}\frac{L}{2} = -\frac{L}{4}$

Par ailleurs, dans le référentiel \mathcal{R} , les extrémités P et Q du trou sont fixes, aux abscisses x(P) = +L/2 et x(Q) = -L/2. Il paraît donc évident que dans le référentiel \mathcal{R} , le vaisseau passe sans difficulté à travers le trou (fig. 19).

On s'intéresse maintenant aux mêmes événements, mais vus dans le référentiel \mathcal{R}' solidaire du vaisseau.

11.6 — Dans le référentiel \mathcal{R}' dessinez dans le plan x'O'z' le vaisseau de longueur L, en repérant la position de ses 2 extrémités. Faites un dessin assez large, que l'on complétera aux questions suivantes.

Le vaisseau est fixe dans le référentiel \mathcal{R}' : voir figure 20 ci-après.

11.7 — Soit un point M(x, y, z) quelconque de la surface de l'Étoile Noire. On a nécessairement x dans l'intervalle $]-\infty, -L/2] \cup [+L/2, +\infty[$. Que vaut z en fonction du temps t dans \mathcal{R} ?

Dans le référentiel \mathcal{R} , tous les points de la surface de l'Étoile Noire se déplacent en translation uniforme à la vitesse $\mathbf{u} = u \, \mathbf{e_z}$. Pour tous les points M(x,y,z) de la surface, on a donc simplement z = ut.

11.8 — Déterminez les coordonnées (x', y', z') des points M de la surface de l'Étoile Noire en fonction du temps t' dans \mathcal{R}' . Quel est le lieu des points M de la surface à l'instant t'=0 dans le plan x'O'z'? Dessinez la position du plan de la surface de l'Étoile Noire à t'=0 sur le dessin précédent.

Pour tout point M(x, y, z) appartenant à la surface de l'Étoile Noire, on a $x \in]-\infty, -L/2] \cup [+L/2, +\infty[$, et z = ut. Si on écrit la transformation de Lorentz inverse,

$$\begin{cases} t = \gamma \left(t' + \frac{vx'}{c^2} \right) \\ x = \gamma \left(x' + vt' \right) \\ y = y' \\ z = z' = ut \end{cases}$$
 où $t = \frac{z}{u} = \frac{z'}{u}$.

Et par conséquent, en utilisant les deux équations donnant t,

$$t = \gamma \left(t' + \frac{vx'}{c^2} \right) = \frac{z'}{u}$$
 soit $z' = \gamma \frac{vux'}{c^2} + \gamma ut'$.

Dans le référentiel du vaisseau, à un instant t' donné, les points M(x',y',z') de la surface de l'étoile noire appartiennent au plan défini par l'équation :

$$z' = \gamma \frac{vux'}{c^2} + \gamma ut'.$$

En particulier, à t' = 0, il s'agit du plan :

$$z' = \gamma \frac{vux'}{c^2}.$$

La pente de l'intersection de la surface avec le plan x'O'z' vaut

$$+\gamma \frac{vu}{c^2} = +\sqrt{3}\frac{u}{c} \ll 1.$$

Cette pente est évidemment très petite car $u \ll c$ (voir fig. 20).

11.9 — Que valent les coordonnées des extrémités P et Q du trou dans le référentiel \mathcal{R} ? Déduisez-en l'équation de la trajectoire z' = f(x') pour chacun de ces deux points dans le référentiel \mathcal{R}' .

Dans le référentiel \mathcal{R} , les extrémités P et Q du trou ont pour coordonnées :

$$\begin{cases} x(P) &= +\frac{L}{2} \\ z(P) &= ut \end{cases} \text{ et } \begin{cases} x(Q) &= -\frac{L}{2} \\ z(Q) &= ut \end{cases}$$

En appliquant Lorentz, et en utilisant t = z/u = z'/u, on trouve :

$$x'(P) = \gamma(x(P) - vt) = \gamma\left(x(P) - \frac{vz'}{u}\right) = \gamma\left(\frac{L}{2} - \frac{vz'}{u}\right)$$

Et, de même,

$$x'(Q) = \gamma(x(Q) - vt) = \gamma\left(x(Q) - \frac{vz'}{u}\right) = \gamma\left(-\frac{L}{2} - \frac{vz'}{u}\right)$$

Ce qui donne la trajectoire des points P et Q dans le plan x'O'z':

$$\begin{cases} z'(P) &= -\frac{1}{\gamma} \frac{u}{v} x'(P) + \frac{u}{v} \frac{L}{2} \\ z'(Q) &= -\frac{1}{\gamma} \frac{u}{v} x'(Q) - \frac{u}{v} \frac{L}{2} \end{cases}$$

La pente de ces trajectoires vaut :

$$-\frac{u}{\gamma v} = -\frac{u}{2 \times c\sqrt{3}/2} = -\frac{1}{\sqrt{3}} \frac{u}{c} \quad \text{avec} \quad \frac{u}{c} \ll 1$$

Pour le dessin, on notera que cette pente est négative, et qu'elle vaut en norme le tiers de la pente (positive) trouvée précédemment pour le plan de la surface de l'Étoile Noire à t' = 0 (fig. 20).

11.10 — Calculez la position de l'intersection des trajectoires des extrémités P et Q avec l'axe des x'. Dessinez les trajectoires de P et Q dans le plan x'O'z'.

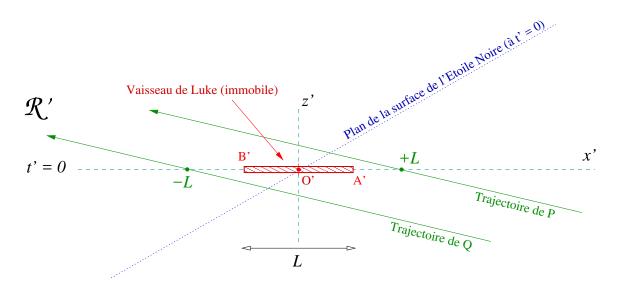


FIGURE 20 – Point de vue dans le référentiel du vaisseau, à t'=0. Les points de la surface de l'Étoile Noire. appartiennent au plan d'équation $z'=\gamma vux'/c^2$ avec $u\ll c$. Les trajectoires des extrémités du trou P et Q sont aussi représentées : l'intersection de la trajectoire de P avec l'axe des x' se produit en x'=+L, et celle de la trajectoire de Q avec l'axe des x' se produit en x'=-L.

En utilisant les équations des trajectoires des points P et Q, et on trouve immédiatement l'intersection de ces trajectoires avec l'axe des x', en posant respectivement z'(P) = 0 et z'(Q) = 0.

L'intersection de la trajectoire de P avec l'axe des x' a lieu à l'abscisse :

$$-\frac{1}{\gamma}\frac{u}{v}x'(P) + \frac{u}{v}\frac{L}{2} = 0 \quad \text{soit} \quad x'(P) = \gamma\frac{L}{2} = L.$$

Et pour Q, elle a lieu à l'abscisse :

$$-\frac{1}{\gamma}\frac{u}{v}x'(Q) - \frac{u}{v}\frac{L}{2} = 0 \quad \text{soit} \quad x'(Q) = -\gamma\frac{L}{2} = -L.$$

11.11 — Décrivez la trajectoire de la surface de l'Étoile Noire dans le référentiel \mathcal{R}' du vaisseau. À votre avis, qui a raison de l'amiral de la flotte ou de Luke? Luke doit-il retourner sur Dagobah auprès de Yoda parfaire sa maîtrise de la relativité restreinte?

Dans le référentiel \mathcal{R}' solidaire du vaisseau, la surface de l'Étoile Noire apparaît inclinée; même si la longueur du trou est inférieure à L, le mouvement de la surface est tel que le passage du vaisseau dans le trou est possible, et qu'aucune collision n'a lieu (figure 21). Luke a donc raison, et dans la mesure où son vaisseau peut être assimilé à un segment de droite de longueur L, il pourra franchir la surface de l'Étoile Noire.

Cet exercice est une déclinaison GeorgeLucaesque du célèbre problème relativiste connu comme "le paradoxe de la règle et du trou", où on considère une règle de longueur L que l'on fait glisser sur une table dans laquelle il y a un trou de même longueur. Ce paradoxe a été longuement débattu, notamment par Rindler (American Journal of Physics 29, 365 (1961); https://doi.org/10.1119/1.1937789).

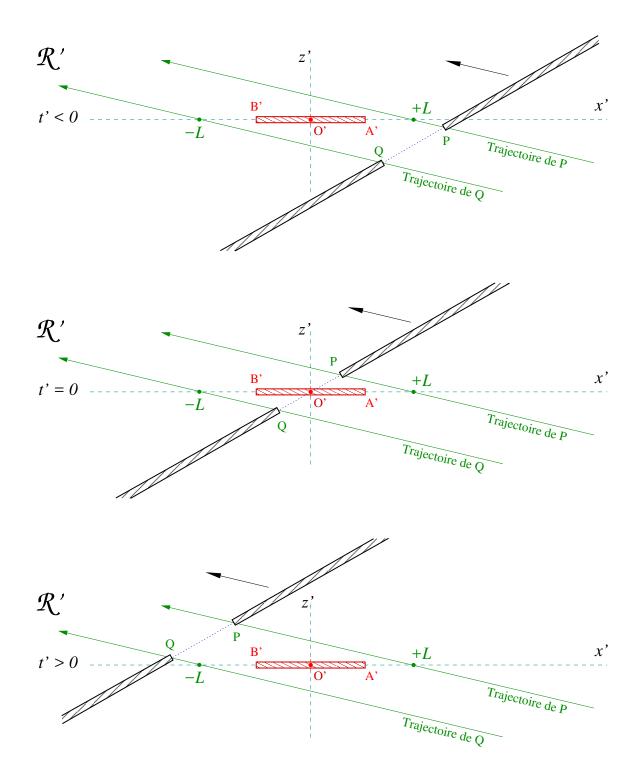


FIGURE 21 – Succession des événements dans le référentiel \mathcal{R}' solidaire du vaisseau. L'orifice dans la surface de l'Étoile Noire est effectivement plus petit que la longueur L du vaisseau, mais la surface apparaît inclinée dans \mathcal{R}' , de telle sorte que le vaisseau passe sans difficulté.

12. Clocks around the Rock: l'expérience de Hafele et Keating

À la fin des années 50 les horloges atomiques au césium-133 commencent à être commercialisées, et leur précision et leur stabilité deviennent suffisantes pour qu'il soit possible, avec de telles horloges, de tester directement les prédictions de la relativité concernant la dilatation du temps.

En 1971, Joseph C. Hafele (1933–2014) propose de vérifier la désynchronisation prédite par la Relativité entre des horloges en mouvement les unes par rapport aux autres ("paradoxe des jumeaux"); il suggère de faire voyager des horloges atomiques en leur faisant faire un tour du globe en avion, soit vers l'Est, soit vers l'Ouest, et de comparer le temps qu'elles affichent avec celui d'une autre horloge atomique restée au sol. Joseph C. Hafele et l'astronome Richard E. Keating (1941–2006) réalisent ensemble l'expérience en octobre 1971. Ils effectuent deux tours du monde en avion (avec escales) sur des lignes commerciales, en transportant avec eux quatre horloges atomiques ("Mister Clock", fig. 22); ils surveillent la bonne marche des horloges tout au long des deux voyages, avant de comparer la durée enregistrée avec celle qu'indiquent les horloges atomiques de référence restées à l'US Naval Observatory (USNO)³.

FIGURE 22 – Joseph C. Hafele (1933–2014) et Richard E. Keating (1941–2006) accompagnant "Mister Clock", les 4 horloges atomiques au césium qui occupaient deux sièges dans l'avion. Photo prise un peu avant le départ du vol Pan American 106 de Washington à Londres [Source : Time Magazine, 18 octobre 1971].

^{3.} C'est probablement l'une des expériences les moins chères jamais réalisées pour tester la théorie de la Relativité : les horloges atomiques ayant été empruntées à l'USNO, l'ensemble de l'expérience n'a coûté que 8000 dollars de l'époque, dépensés principalement en billets d'avion pour deux tours du monde avec 4 "passagers", Mr. Clock occupant deux fauteuils.

Préambule: temps propre d'une horloge en mouvement

Dans un référentiel galiléen \mathcal{R} , considérons une horloge parfaite en mouvement, selon une trajectoire quelconque, à une vitesse $\mathbf{u}(t)$ (non nécessairement constante). À un instant t donné, on considère le référentiel \mathcal{R}' qui se confond à cet instant précis t avec le référentiel propre de l'horloge. Autrement dit, la vitesse $\mathbf{v}_{\mathcal{R}'/\mathcal{R}}$ de \mathcal{R}' par rapport à \mathcal{R} est égale, à cet instant t particulier, à $\mathbf{u}(t)$.

12.1 — En utilisant l'invariance de l'intervalle d'espace-temps, montrez que deux événements de la trajectoire de l'horloge séparés par (dt, dr) dans le référentiel inertiel \mathcal{R} , sont séparés dans le référentiel inertiel tangent \mathcal{R}' par $(d\tau, \mathbf{0})$, avec

$$d\tau = \frac{1}{\gamma(\mathbf{u})}dt = \left(1 - \frac{\mathbf{u}^2}{c^2}\right)^{\frac{1}{2}}dt = \left(1 - \frac{u^2}{c^2}\right)^{\frac{1}{2}}dt$$

où τ est le *temps propre* de l'horloge, c'est à dire le temps que l'horloge affiche.

Considérons deux événements infiniment proches de la trajectoire de l'horloge : ces deux événements sont séparés par l'intervalle $(\mathrm{d}t,\mathrm{d}\mathbf{r})$, et par $(\mathrm{d}t'=\mathrm{d}\tau,\mathbf{0})$ dans le référentiel inertiel tangent \mathcal{R}' , qui se confond avec le référentiel propre de l'horloge à cet instant t. Par invariance du carré de l'intervalle d'espace-temps, on aura donc,

$$ds^2 = c^2 (dt)^2 - (d\mathbf{r})^2 = c^2 (d\tau)^2$$

En factorisant par $c^2(dt)^2$, on obtient :

$$c^{2}(d\tau)^{2} = c^{2}(dt)^{2} \left[1 - \frac{1}{c^{2}} \left(\frac{d\mathbf{r}}{dt} \right)^{2} \right] = c^{2}(dt)^{2} \left[1 - \frac{\mathbf{u}^{2}}{c^{2}} \right]$$

où on reconnaît l'expression de la vitesse instantanée de l'horloge dans le référentiel \mathcal{R} , $\mathbf{u}(t) = \mathrm{d}\mathbf{r}/\mathrm{d}t$. On obtient finalement :

$$d\tau = \left(1 - \frac{\mathbf{u}^2}{c^2}\right)^{\frac{1}{2}} dt = \left(1 - \frac{u^2}{c^2}\right)^{\frac{1}{2}} dt = \frac{1}{\gamma(\mathbf{u})} dt.$$

12.2 — Pour des vitesses u faibles devant la vitesse de la lumière, développez l'expression précédente en ne conservant que les termes de premier ordre en u^2/c^2 .

En développant le résultat précédent on obtient :

$$d\tau = \frac{1}{\gamma(\mathbf{u})}dt = \left[1 - \frac{\mathbf{u}^2}{c^2}\right]^{\frac{1}{2}}dt = \left[1 - \frac{1}{2}\frac{u^2}{c^2} + \cdots\right]dt \approx \left[1 - \frac{u^2}{2c^2}\right]dt$$

en ne conservant que le terme de premier ordre en u^2/c^2 .

Dilatation cinématique du temps

Afin de modéliser l'expérience de Hafele et Keating, on se placera dans le référentiel géocentrique \mathcal{R}_g , à savoir le référentiel dont l'origine est le centre de la Terre, et dont les trois axes pointent vers des étoiles lointaines (fig. 23). Comme les expériences considérées ne durent que quelques jours, on assimilera le référentiel géocentrique \mathcal{R}_g à un référentiel galiléen.

On considère de plus que ce référentiel \mathcal{R}_g est muni d'une horloge idéale et parfaite, qui fournit le temps t: cette horloge, solidaire de \mathcal{R}_g , ne subit ni la rotation de la Terre, ni le champ de gravité terrestre (elle pourrait par exemple être placée en son centre).

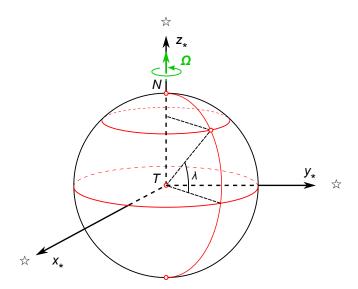


FIGURE 23 – Référentiel géocentrique \mathcal{R}_g muni du repère $(T, x_\star, y_\star, z_\star)$, dont l'origine est le centre T de la terre, et dont les axes sont définis par les étoiles. Pour une expérience de courte durée (comparée à la période de révolution de la Terre autour du Soleil), le référentiel géocentrique peut être considéré comme galiléen; le référentiel de Copernic (système solaire) est une meilleure approximation d'un référentiel galiléen.

Pour comprendre l'expérience de Hafele et Keating, on s'intéressera à la trajectoire de trois horloges particulières : une horloge atomique placée en un lieu donné à la surface terrestre, immobile par rapport au sol; et deux horloges qui font chacune un tour du monde en avion, l'une vers l'Est, et l'autre vers l'Ouest.

12.3 — Faites un dessin, du point de vue d'un observateur placé au pôle Nord, à très haute altitude, et qui regarde la Terre tourner au dessous de lui. Indiquez le sens de rotation de la Terre. Schématisez l'horloge immobile au sol, et les horloges qui font un tour du monde vers l'Est et vers l'Ouest en volant au-dessus de l'équateur.

Voir figure 24.

On notera R_{\oplus} le rayon de la Terre, Ω_{\oplus} sa vitesse angulaire de rotation dans le référentiel géocentrique \mathcal{R}_g , et M_{\oplus} la masse de la Terre.

12.4 — Connaissant la durée d'une révolution terrestre par rapport aux étoiles lointaines (jour sidéral), déduisez-en la vitesse angulaire Ω_{\oplus} de rotation de la Terre dans le référentiel géocentrique \mathcal{R}_g . Donnez son expression et sa valeur numérique.

Dans le référentiel géocentrique, la Terre effectue un tour sur elle-même en une période d'un *jour sidéral*, soit $T_{\oplus}=23\,\mathrm{h}\,56\,\mathrm{m}\,4\,\mathrm{s}$. On en déduit sa vitesse angulaire de rotation :

$$\Omega_{\oplus} = \frac{2\pi}{23\,\mathrm{h}\,56\,\mathrm{m}\,4\,\mathrm{s}} = \frac{2\pi}{86164\,\mathrm{s}} = 7.292 \times 10^{-5}\,\mathrm{rad}\cdot\mathrm{s}^{-1}.$$

12.5 — Supposons, pour simplifier, que l'horloge immobile par rapport au sol soit placée en un point de la surface terrestre à l'équateur. Donnez l'expression littérale et la valeur numérique de la vitesse instantanée (en m/s) de cette horloge dans le référentiel géocentrique.

Comme la Terre tourne, la vitesse de l'horloge immobile dans le référentiel local vaut, dans le référentiel géocentrique \mathcal{R}_g ,

$$\mathbf{u}_{\mathrm{fixe}} = \omega_{\mathcal{R}_{\mathrm{local}}/\mathcal{R}_g} \times \mathbf{TM}$$

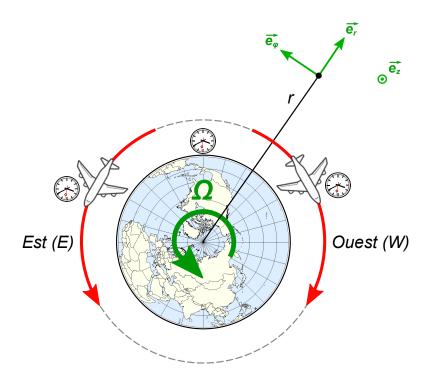


FIGURE 24 – Schéma de l'expérience de Hafele et Keating. Une horloge atomique choisie comme référence demeure au point de départ; une seconde horloge atomique fait un tour du monde vers l'Est, tandis que la troisième effectue un tour du globe vers l'Ouest. Lorsque les horloges voyageuses sont de retour, on compare le temps qu'elles affichent avec celui de l'horloge atomique de référence.

où M est la position de l'horloge, et T le centre de la Terre. Comme on suppose ici que l'horloge est placée sur un point à l'équateur,

$$\mathbf{u}_{\text{fixe}} = \Omega_{\oplus} \, \mathbf{e}_z \times R_{\oplus} \, \mathbf{e}_r = R_{\oplus} \Omega_{\oplus} \, \mathbf{e}_{\phi} \qquad \text{et} \quad u_{\text{fixe}} = R_{\oplus} \Omega_{\oplus}.$$

Numériquement, on obtient $u_{\text{fixe}} \approx 465.1 \,\text{m} \cdot \text{s}^{-1} \approx 1674 \,\text{km} \cdot \text{h}^{-1}$.

12.6 — Déduisez-en le facteur γ associé, et l'expression de l'intervalle de temps propre $\mathrm{d}\tau_{\mathrm{fixe}}$ pour cette horloge fixe par rapport en sol en fonction de $\mathrm{d}t$. Estimez numériquement le facteur β . En considérant que les vitesses ici sont faibles devant c, déduisez-en une expression approchée de $\mathrm{d}\tau_{\mathrm{fixe}}$, de la forme :

$$d\tau_{\text{fixe}} \approx \left(1 - \frac{P}{2c^2}\right) dt$$
 (10)

Donnez l'expression de P en fonction de R_{\oplus} et Ω_{\oplus} .

Le facteur γ associé s'écrit :

$$\gamma(u_{\rm fixe}) = \left[1 - \frac{u_{\rm fixe}^2}{c^2}\right]^{-1/2} = \left[1 - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{c^2}\right]^{-1/2}$$

Comme $\beta = u_{\rm fixe}/c = R_{\oplus}\Omega_{\oplus}/c \approx 1.55 \times 10^{-6} \ll 1$, on peut se permettre de développer l'expression au premier ordre en β^2 ,

$$\gamma(u_{\text{fixe}}) = \left[1 - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{c^2}\right]^{-1/2} \approx 1 + \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{2c^2}$$

De ce qui précède, on en déduit la relation entre l'intervalle de temps $d\tau_{fixe}$ qui sépare deux événements de la trajectoire de cette horloge dans son propre référentiel, et l'intervalle de temps correspondant dt mesuré dans le référentiel géocentrique,

$$d\tau_{\text{fixe}} = \frac{1}{\gamma(u_{\text{fixe}})} dt = \left[1 - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{c^2} \right]^{1/2} dt \approx \left(1 - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{2c^2} \right) dt. \tag{11}$$

Le terme P vaut ainsi $P = R_{\oplus}^2 \Omega_{\oplus}^2$.

On s'intéresse maintenant à une horloge qui fait le tour du monde à bord d'un avion. L'avion vole à l'altitude h et à la vitesse v par rapport au sol, en longeant l'équateur terrestre. On comptera v positivement si l'avion vole vers l'Est, et négativement s'il vole vers l'Ouest.

12.7 — En utilisant la loi relativiste de composition des vitesses, donnez l'expression de la vitesse instantanée de l'avion volant au-dessus de l'équateur à l'altitude h dans le référentiel géocentrique \mathcal{R}_g . Montrez que vu les faibles vitesses considérées ici par rapport à c, l'expression peut se réduire à la loi classique de composition des vitesses.

Pour l'avion qui vole à l'altitude h la vitesse v par rapport au sol, la vitesse d'entraînement vaut cette fois, à l'altitude h:

$$\omega_{\mathcal{R}_{local}/\mathcal{R}_q} \times \mathbf{TM} = \Omega_{\oplus} \mathbf{e}_z \times (R_{\oplus} + h) \mathbf{e}_r = (R_{\oplus} + h) \Omega_{\oplus} \mathbf{e}_{\phi}$$

où T est le centre de la Terre, et M la position de l'horloge dans l'avion.

Comme l'avion se déplace à la vitesse $\mathbf{v}=v\,\mathbf{e}_\phi$ par rapport au sol, il nous faut normalement utiliser la loi relativiste de composition des vitesses pour en établir la vitesse u_{vol} de l'avion dans le référentiel géocentrique \mathcal{R}_q :

$$u_{\text{vol}} = \frac{v + (R_{\oplus} + h)\Omega}{1 + \frac{v(R_{\oplus} + h)\Omega}{c^2}}.$$

Cependant, comme les vitesses considérées sont faibles devant c, on pourra utiliser l'addition classique des vitesses sans commettre une grande erreur :

$$u_{\text{vol}} = \frac{v + (R_{\oplus} + h)\Omega}{1 + \frac{v(R_{\oplus} + h)\Omega}{c^2}} \approx v + (R_{\oplus} + h)\Omega.$$

12.8 — Déduisez-en le facteur γ correspondant, et l'expression de l'intervalle de temps propre $\mathrm{d}\tau_{\mathrm{vol}}$ en fonction de $\mathrm{d}t$ et de la vitesse v de l'avion. Montrez qu'en développant au premier ordre, $\mathrm{d}\tau_{\mathrm{vol}}$ peut se mettre sous la forme :

$$d\tau_{\rm vol} \approx \left(1 - \frac{Q}{2c^2}\right) dt$$
 (12)

et donnez l'expression de Q en fonction de R_{\oplus} , h et Ω_{\oplus} .

Le facteur γ pour l'horloge à bord de l'avion s'écrit :

$$\gamma(u_{\text{vol}}) = \left[1 - \frac{u_{\text{vol}}^2}{c^2}\right]^{-1/2} = \left[1 - \frac{(v + (R_{\oplus} + h)\Omega_{\oplus})^2}{c^2}\right]^{-1/2}$$

Comme précédemment, on peut se permettre de développer l'expression au premier ordre en $\beta^2 = u_{\rm vol}^2/c^2$,

$$\gamma(u_{\text{vol}}) = \left[1 - \frac{(v + (R_{\oplus} + h)\Omega_{\oplus})^2}{c^2}\right]^{-1/2} \approx 1 + \frac{(v + (R_{\oplus} + h)\Omega_{\oplus})^2}{2c^2}$$

De ce qui précède, on en déduit la relation entre l'intervalle de temps $\mathrm{d}\tau_{\mathrm{vol}}$ qui sépare deux événements de la trajectoire de l'horloge embarquée dans son propre référentiel, et l'intervalle de temps correspondant $\mathrm{d}t$ mesuré dans le référentiel géocentrique,

$$d\tau_{\text{vol}} = \frac{1}{\gamma(u_{\text{vol}})} dt = \left[1 - \frac{(v + (R_{\oplus} + h)\Omega_{\oplus})^2}{c^2} \right]^{1/2} dt \approx \left(1 - \frac{(v + (R_{\oplus} + h)\Omega_{\oplus})^2}{2c^2} \right) dt.$$
 (13)

Le terme Q vaut donc $Q = (v + (R_{\oplus} + h)\Omega_{\oplus})^2$.

Effet supplémentaire de la gravitation sur l'écoulement du temps

Comme l'expérience est menée sur Terre, les horloges sont plongées dans le champ gravitationnel terrestre. La Relativité Générale prédit que des horloges parfaites se comportent différemment selon l'intensité du champ gravitationnel qu'elles subissent : plus le champ est intense, et plus l'écoulement du temps ralentit. Le traitement complet nécessiterait d'utiliser le formalisme de la Relativité Générale ; cependant, du fait de la faible intensité du champ terrestre, on pourra se permettre ici d'ajouter un simple terme correctif gravitationnel dans les équations (10) et (12). Ces équations deviennent ainsi : pour l'horloge fixe,

$$d\tau_{\text{fixe}} \approx \left(1 - \frac{P}{2c^2}\right) dt \qquad d\tau_{\text{fixe}} \approx \left(1 + \frac{\Phi(r_{\text{fixe}})}{c^2} - \frac{P}{2c^2}\right) dt$$
 (14)

et, pour l'horloge à bord de l'avion,

$$d\tau_{\text{vol}} \approx \left(1 - \frac{Q}{2c^2}\right) dt \qquad d\tau_{\text{vol}} \approx \left(1 + \frac{\Phi(r_{\text{vol}})}{c^2} - \frac{Q}{2c^2}\right) dt$$
 (15)

où $\Phi(r)$ est l'intensité du potentiel gravitationnel que subit un objet à la distance $r\geqslant R_{\oplus}$ du centre de la Terre :

$$\Phi(r) = -\frac{GM_{\oplus}}{r}$$

avec R_{\oplus} le rayon de la Terre, et M_{\oplus} sa masse (Le champ gravitationnel dérive de ce potentiel Φ).

12.9 — Explicitez les équations (14) et (15) respectivement pour l'horloge fixe au sol, et pour l'horloge qui vole à l'altitude h; en particulier, explicitez r_{fixe} et r_{vol} .

Pour l'horloge restée fixe à l'équateur, on aura $r_{\rm fixe}=R_{\oplus}$; pour l'horloge à bord de l'avion, la distance au centre de la Terre sera $r_{\rm vol}=R_{\oplus}+h$.

En substituant dans les équations (14) et (15), on obtient, pour l'horloge fixe,

$$d\tau_{\text{fixe}} \approx \left(1 + \frac{\Phi(R_{\oplus})}{c^2} - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{2c^2}\right) dt = \left(1 - \frac{GM_{\oplus}}{R_{\oplus}c^2} - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{2c^2}\right) dt$$

et pour l'horloge qui vole,

$$d\tau_{\text{vol}} \approx \left(1 + \frac{\Phi(R_{\oplus} + h)}{c^2} - \frac{(v + (R_{\oplus} + h)\Omega_{\oplus})^2}{2c^2}\right) dt = \left(1 - \frac{GM_{\oplus}}{(R_{\oplus} + h)c^2} - \frac{(v + (R_{\oplus} + h)\Omega_{\oplus})^2}{2c^2}\right) dt.$$

Calcul approché du décalage des horloges

12.10 — En intégrant $d\tau_{\text{fixe}}$ et $d\tau_{\text{vol}}$ sur tout le parcours, entre l'instant où l'horloge qui voyage quitte l'horloge fixe (événement A), et celui où les deux horloges se retrouvent au point de départ à la fin du voyage (événement B), calculez les durées $\Delta\tau_{\text{fixe}}$ et $\Delta\tau_{\text{vol}}$ mesurées pendant l'ensemble du voyage en fonction de Δt , le temps écoulé entre les événements A et B dans le référentiel géocentrique. Pour simplifier, on supposera que l'avion vole à vitesse et à altitude constantes, au dessus de l'équateur terrestre, et on négligera les phases d'atterrissage et de décollage de l'avion.

En intégrant entre les événements A (départ de l'horloge en avion) et B (retour de l'horloge au point de départ sur Terre, là où est restée l'horloge fixe), on obtient, d'une part, pour l'horloge restée au sol,

$$\Delta \tau_{\text{fixe}} = \int_{A}^{B} \left(1 + \frac{\Phi(r)}{c^2} - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{2c^2} \right) dt = \int_{A}^{B} \left(1 - \frac{GM_{\oplus}}{R_{\oplus}c^2} - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{2c^2} \right) dt = \left(1 - \frac{GM_{\oplus}}{R_{\oplus}c^2} - \frac{R_{\oplus}^2 \Omega_{\oplus}^2}{2c^2} \right) \Delta t$$

et d'autre part, pour l'horloge qui a fait le tour du monde à bord de l'avion,

$$\begin{split} \Delta\tau_{\mathrm{vol}} &= \int_{A}^{B} \left(1 + \frac{\Phi(r)}{c^2} - \frac{\left(v + (R_{\oplus} + h)\Omega_{\oplus}\right)^2}{2c^2} \right) \mathrm{d}t = \int_{A}^{B} \left(1 - \frac{GM_{\oplus}}{(R_{\oplus} + h)c^2} - \frac{\left(v + (R_{\oplus} + h)\Omega_{\oplus}\right)^2}{2c^2} \right) \mathrm{d}t \\ \Delta\tau_{\mathrm{vol}} &= \left(1 - \frac{GM_{\oplus}}{(R_{\oplus} + h)c^2} - \frac{\left(v + (R_{\oplus} + h)\Omega_{\oplus}\right)^2}{2c^2} \right) \Delta t \end{split}$$

en négligeant les phases d'atterrissage et de décollage de l'avion.

12.11 — Exprimez le rapport $\Delta \tau_{\text{vol}}/\Delta \tau_{\text{fixe}}$. Pour l'instant, ne poussez pas plus loin le calcul.

Comme vu précédemment, $r_{\rm fixe}=R_{\oplus}$ et $r_{\rm vol}=R_{\oplus}+h$. Le rapport $\Delta \tau_{\rm vol}/\Delta \tau_{\rm fixe}$ s'écrit simplement,

$$\frac{\Delta \tau_{\rm vol}}{\Delta \tau_{\rm fixe}} = \left\lceil 1 - \frac{GM_{\oplus}}{(R_{\oplus} + h)c^2} - \frac{\left(v + (R_{\oplus} + h)\Omega_{\oplus}\right)^2}{2c^2} \right\rceil \times \left[1 - \frac{GM_{\oplus}}{R_{\oplus}c^2} - \frac{R_{\oplus}^2\Omega_{\oplus}^2}{2c^2} \right]^{-1}.$$

12.12 — L'effet que l'on cherche à mesurer est très faible. On pourra considérer que les vitesses en jeu sont faibles devant c, et que, de plus, l'altitude de l'avion est petite devant le rayon terrestre : $h \ll R_{\oplus}$. Pour notre calcul, afin de ne conserver que les termes significatifs dans le développement, estimez numériquement les termes suivants :

$$\frac{GM_{\oplus}h}{R_{\oplus}^2c^2} \qquad \frac{v^2}{2c^2} \qquad \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} \qquad \frac{h^2\Omega_{\oplus}^2}{2c^2} \qquad \frac{h\Omega_{\oplus}v}{c^2}$$

On trouve:

$$\frac{GM_{\oplus}h}{R_{\oplus}^2c^2} \approx 1.09 \times 10^{-12} \qquad \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} \approx 1.03 \times 10^{-12} \qquad \frac{v^2}{2c^2} \approx 0.22 \times 10^{-12}$$
$$\frac{h^2\Omega_{\oplus}^2}{2c^2} \approx 2.96 \times 10^{-18} \qquad \frac{h\Omega_{\oplus}v}{c^2} \approx 1.62 \times 10^{-15}.$$

Il apparaît que les deux derniers termes pourront être négligés.

12.13 — En faisant un développement limité au premier ordre de l'expression de $\Delta \tau_{\rm vol}/\Delta \tau_{\rm fixe}$, *i.e.* en négligeant les termes d'ordre supérieur en c^{-4} , c^{-6} , etc, et en ne conservant que les termes significatifs, montrez que

$$\frac{\Delta \tau_{\text{vol}}}{\Delta \tau_{\text{fixe}}} \approx 1 + \frac{GM_{\oplus}h}{R_{\oplus}^2 c^2} - \frac{R_{\oplus}\Omega_{\oplus}^2 h}{c^2} - \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} - \frac{v^2}{2c^2}$$
 (16)

Comme l'altitude h est faible devant le rayon R_{\oplus} de la Terre, on pourra développer au premier ordre les termes en $(R_{\oplus} + h)$:

$$\frac{GM_{\oplus}}{(R_{\oplus} + h)c^2} = \frac{GM_{\oplus}}{R_{\oplus}c^2} \left(1 + \frac{h}{R_{\oplus}}\right)^{-1} \approx \frac{GM_{\oplus}}{R_{\oplus}c^2} \left(1 - \frac{h}{R_{\oplus}}\right).$$

De même,

$$(R_{\oplus} + h)^2 = R_{\oplus}^2 \left(1 + \frac{h}{R_{\oplus}}\right)^2 \approx R_{\oplus}^2 \left(1 + \frac{2h}{R_{\oplus}}\right).$$

Développons l'expression du rapport $\Delta \tau_{\rm vol}/\Delta \tau_{\rm fixe}$ au premier ordre :

$$\begin{split} \frac{\Delta\tau_{\mathrm{vol}}}{\Delta\tau_{\mathrm{fixe}}} &= \left[1 - \frac{GM_{\oplus}}{(R_{\oplus} + h)c^2} - \frac{(v + (R_{\oplus} + h)\Omega_{\oplus})^2}{2c^2}\right] \times \left[1 - \frac{GM_{\oplus}}{R_{\oplus}c^2} - \frac{R_{\oplus}^2\Omega_{\oplus}^2}{2c^2}\right]^{-1} \\ &\approx \left[1 - \frac{GM_{\oplus}}{R_{\oplus}c^2} + \frac{GM_{\oplus}h}{R_{\oplus}^2c^2} - \frac{v^2}{2c^2} - \frac{R_{\oplus}^2\Omega_{\oplus}^2}{2c^2} - \frac{R_{\oplus}h\Omega_{\oplus}^2}{c^2} - \frac{vR_{\oplus}\Omega_{\oplus}}{c^2} - \frac{vh\Omega_{\oplus}}{2c^2}\right] \times \\ &\qquad \qquad \left[1 + \frac{GM_{\oplus}}{R_{\oplus}c^2} + \frac{R_{\oplus}^2\Omega_{\oplus}^2}{2c^2} - \frac{R_{\oplus}^2\Omega_{\oplus}^2}{2c^2} - \frac{R_{\oplus}h\Omega_{\oplus}^2}{c^2} - \frac{vR_{\oplus}\Omega_{\oplus}}{c^2} + \frac{GM_{\oplus}}{R_{\oplus}c^2} + \frac{R_{\oplus}^2\Omega_{\oplus}^2}{2c^2}\right] \\ &\approx 1 - \frac{GM_{\oplus}}{R_{\oplus}c^2} + \frac{GM_{\oplus}h}{R_{\oplus}^2c^2} - \frac{v^2}{2c^2} - \frac{R_{\oplus}h\Omega_{\oplus}^2}{2c^2} - \frac{vR_{\oplus}\Omega_{\oplus}}{c^2} - \frac{vR_{\oplus}\Omega_{\oplus}}{c^2} + \frac{GM_{\oplus}}{R_{\oplus}c^2} + \frac{R_{\oplus}^2\Omega_{\oplus}^2}{2c^2} \end{split}$$

où on a négligé les termes d'ordre supérieur en c^{-4} , c^{-6} , etc, les termes d'ordre supérieurs du développement, ainsi que les termes identifiés précédemment comme négligeables.

En simplifiant, on obtient ainsi,

$$\frac{\Delta \tau_{\rm vol}}{\Delta \tau_{\rm fixe}} \approx 1 + \frac{GM_{\oplus}h}{R_{\oplus}^2c^2} - \frac{R_{\oplus}h\Omega_{\oplus}^2}{c^2} - \frac{vR_{\oplus}\Omega_{\oplus}}{c^2} - \frac{v^2}{2c^2}.$$

12.14 — Exprimez l'accélération de pesanteur g à l'équateur, en fonction de G, M_{\oplus} , R_{\oplus} . Rappelezvous de la définition du poids, et n'oubliez pas que la Terre tourne sur elle-même...

Le poids P = mg d'un objet de masse m est la somme de la force d'accélération gravitationnelle de la Terre, et de la force inertielle d'entraînement due à la rotation de la planète, *i.e.* la force centrifuge. En un point à la surface de la Terre à l'équateur, on obtient :

$$\mathbf{P} = m\mathbf{g} = -mg\,\mathbf{e}_r = \mathbf{F}_g + \mathbf{F}_e = -\frac{GM_{\oplus}m}{R_{\oplus}^2}\,\mathbf{e}_r + mR_{\oplus}\Omega_{\oplus}^2\,\mathbf{e}_r.$$

On en déduit l'expression de l'intensité du champ de pesanteur à l'équateur,

$$g = \frac{GM_{\oplus}}{R_{\oplus}^2} - R_{\oplus}\Omega_{\oplus}^2.$$

12.15 — En utilisant ce qui précède, montrez que l'équation (16) peut se ré-écrire :

$$\frac{\Delta \tau_{\rm vol}}{\Delta \tau_{\rm five}} \approx 1 + \frac{gh}{c^2} - \frac{R\Omega_{\oplus}v}{c^2} - \frac{v^2}{2c^2}$$

Le résultat est immédiat :

$$\frac{\Delta \tau_{\text{vol}}}{\Delta \tau_{\text{fixe}}} \approx 1 + \frac{GM_{\oplus}h}{R_{\oplus}^2c^2} - \frac{R_{\oplus}\Omega_{\oplus}^2h}{c^2} - \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} - \frac{v^2}{2c^2} = 1 + \frac{h}{c^2} \left[\frac{GM_{\oplus}}{R_{\oplus}^2} - R_{\oplus}\Omega_{\oplus}^2 \right] - \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} - \frac{v^2}{2c^2}$$
$$= 1 + \frac{gh}{c^2} - \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} - \frac{v^2}{2c^2}.$$

12.16 — Déduisez-en l'expression de l'écart relatif $\delta(v)$ entre l'horloge qui a volé et l'horloge restée au sol :

$$\delta(v) = \frac{\Delta \tau_{\text{vol}}(v) - \Delta \tau_{\text{fixe}}}{\Delta \tau_{\text{fixe}}}.$$

D'après ce qui précède,

$$\delta(v) = \frac{\Delta \tau_{\rm vol}(v) - \Delta \tau_{\rm fixe}}{\Delta \tau_{\rm fixe}} = \frac{\Delta \tau_{\rm vol}(v)}{\Delta \tau_{\rm fixe}} - 1 \approx \frac{gh}{c^2} - \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} - \frac{v^2}{2c^2}.$$

12.17 — Estimez numériquement le décalage relatif δ_E attendu pour l'horloge qui a fait le tour de monde vers l'Est; calculez de même δ_W pour l'horloge qui est partie vers l'Ouest.

Pour l'horloge à bord de l'avion qui vole vers l'Est, sa vitesse est +v par rapport au sol,

$$\delta_{\rm E} \approx \frac{gh}{c^2} - \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} - \frac{v^2}{2c^2} \approx 1.09 \times 10^{-12} - 1.03 \times 10^{-12} - 0.22 \times 10^{-12} \approx -0.16 \times 10^{-12}$$

Tandis que pour l'horloge qui voyage vers l'Ouest, sa vitesse vaut -v par rapport au sol, et on a alors :

$$\delta_{\rm W} \approx \frac{gh}{c^2} + \frac{R_{\oplus}\Omega_{\oplus}v}{c^2} - \frac{v^2}{2c^2} \approx 1.09 \times 10^{-12} + 1.03 \times 10^{-12} - 0.22 \times 10^{-12} \approx +1.90 \times 10^{-12}.$$

12.18 — Pour le tour du monde effectué vers l'Est (commencé le 4 octobre 1971), les phases de vol ont duré 41.2 heures au total; pour le tour de monde vers l'Ouest (démarré le 13 octobre 1971), la durée cumulée de vol a été de 48.6 heures. Déduisez-en les décalages attendus $\Delta \tau_E$ et $\Delta \tau_W$ par rapport à l'horloge restée fixe, et donnez leurs valeurs en nanosecondes. Comparez avec les mesures effectuées par Hafele et Keating (table 1).

Pour le premier tour du monde effectué en allant vers l'Est, la durée cumulée des phases de vol est $\Delta T_E=41.2\,\mathrm{h}$ (les moments passés au sol entre les vols successifs n'ont pas d'effet sur le décalage avec l'horloge de référence, car pendant les escales l'horloge qui voyage est immobile par rapport à l'horloge de l'USNO). À la fin du tour du monde, le décalage attendu avec l'horloge de référence est par conséquent :

$$\Delta \tau_E = \delta_E \Delta T_E \approx -24 \times 10^{-9} \,\mathrm{s} = -24 \,\mathrm{ns}.$$

Pour l'horloge qui a voyagé vers l'Ouest, la durée cumulée des vols successifs est de $\Delta T_W=48.6\,\mathrm{h}$; le décalage attendu avec l'horloge de référence est :

$$\Delta \tau_W = \delta_W \Delta T_W \approx +332 \times 10^{-9} \,\mathrm{s} = +332 \,\mathrm{ns}.$$

Les valeurs obtenues par notre calcul grossier sont du bon ordre de grandeur, comparées aux mesures effectuées par Hafele et Keating lors de leur célèbre expérience. Avec un calcul plus précis tenant

compte de la latitude de l'horloge fixe (voir remarque ci-dessous), et de la trajectoire précise des deux avions, Hafele et Keating obtiennent :

$$\Delta \tau_E = -40 \pm 23 \,\mathrm{ns}$$
 et $\Delta \tau_W = +275 \pm 21 \,\mathrm{ns}$

ce qui est compatible avec leurs mesures (table 1).

Remarque : on a ici grandement simplifié la trajectoire des avions, en supposant un vol circumterrestre au-dessus de l'équateur, à vitesse et altitude constantes. En pratique, Hafele et Keating ont emprunté des vols commerciaux ordinaires : pour obtenir un calcul théorique plus précis, il faut tenir compte de la latitude du lieu dans l'équation (14), et il faut intégrer l'équation (15) le long des véritables trajets des avions de ligne utilisés, en tenant compte des variations de la latitude, de la vitesse de vol et de l'altitude. Hafele et Keating ont pu effectuer ces calculs à partir des données de vol obtenues auprès des équipages de chacun des avions empruntés lors de l'expérience.

Horloge (numéro de série)	Δau_E	Δau_W
#120	$-57\mathrm{ns}$	$+277\mathrm{ns}$
#361	$-74\mathrm{ns}$	$+284\mathrm{ns}$
#408	$-55\mathrm{ns}$	$+266\mathrm{ns}$
#447	$-51\mathrm{ns}$	$+266\mathrm{ns}$
Moyenne	$-59 \pm 10\mathrm{ns}$	$+275\pm7\mathrm{ns}$

TABLE 1 – Différences de temps observées entre les 4 horloges atomiques utilisées et l'horloge atomique de référence de l'USNO. [Source: Joseph C. Hafele et Richard E. Keating, "Around-the-world atomic clocks: observed relativistic time gains", Science, vol. 177, n°4044 (1972), p. 168-170.]

Données:

$$\begin{split} G &= 6.67430(15) \times 10^{-11}\,\mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2} & c &= 299792458\,\mathrm{m} \cdot \mathrm{s}^{-1} \\ M_{\oplus} &= 5.9722 \times 10^{24}\,\mathrm{kg} & R_{\oplus} &= 6378\,\mathrm{km} & g \approx 9.80\,\mathrm{m} \cdot \mathrm{s}^{-1} \end{split}$$

1 jour sidéral : $T_{\oplus} = 23 \,\mathrm{h}\,56\,\mathrm{min}\,4\,\mathrm{s}$.

Avion : altitude de vol $h = 10 \, \mathrm{km}$; vitesse par rapport au sol $v = 200 \, \mathrm{m \cdot s^{-1}}$

L'expérience de Hafele et Keating a été reproduite à de nombreuses reprises, ainsi que différentes variantes : toutes confirment les prédictions de la Relativité.

De fait, le déployement des systèmes de positionnement global (GPS, GLONASS, Beidu, Galileo) a rendu indispensable de tenir compte de ces effets temporels pour assurer le bon fonctionnement des constellations de satellites "GPS". Dans ces constellations, chaque satellite transporte plusieurs horloges atomiques afin de générer un signal modulé temporellement, et la réception de signaux de plusieurs satellites permet de déterminer sa propre position par triangulation. Il est impératif de tenir compte et de corriger les effets relativistes, à la fois cinématiques et gravitationnels, pour obtenir un positionnement correct : sans ces corrections relativistes, les performances des systèmes de positionnement global seraient très dégradées.

2ème Partie

Composition des vitesses — Mouvement hyperbolique — Paradoxe des jumeaux — Voyages intersidéraux.

1. Composition des vitesses

Vues dans le laboratoire, deux particules A et B s'éloignent de l'origine choisie O dans des directions opposées avec chacune une vitesse 3c/4 mesurée dans le référentiel du laboratoire.

1.1 — Est-il correct de dire que la vitesse relative de A par rapport à B est 3c/2, c'est à dire supérieure à c? Quelle est la vitesse de A par rapport à B? Et réciproquement?

Utilisons la loi relativiste de composition des vitesses. Dans le référentiel \mathcal{R} du laboratoire, si on choisi l'axe des abscisses orienté parallèlement à la vitesse de A, les vitesses des particules A et B sont :

$$\mathbf{u}_A = +\frac{3c}{4}\,\mathbf{e}_x \qquad \mathbf{u}_B = -\frac{3c}{4}\,\mathbf{e}_x$$

Plaçons nous maintenant dans $\mathcal{R}' = \mathcal{R}_B$ le référentiel de la particule B, en translation uniforme à la vitesse \mathbf{u}_B par rapport à \mathcal{R} . La composition des vitesses donne la vitesse de A dans le référentiel $\mathcal{R}' = \mathcal{R}_B$:

$$u(A/B) = u'(A) = \frac{u(A) - v(B/A)}{1 - \frac{u(A)v(B/A)}{c^2}} = \frac{\frac{3c}{4} - \left(-\frac{3c}{4}\right)}{1 - \left(\frac{3}{4}\right)\left(-\frac{3}{4}\right)} = \frac{3c/2}{1 + 9/16} = \frac{24}{25}c < c$$

On trouve bien une vitesse inférieure à c pour la particule A dans le référentiel de B, contrairement à ce que donnerait la règle galiléenne de composition des vitesses.

Par symétrie, on aura de même, pour la particule B vue dans le référentiel de A:

$$u(B/A) = -\frac{24}{25}c$$
 $|u(B/A)| < c$.

1.2 — En partant de la loi de composition des vitesses, montrez que la vitesse d'un objet ne peut dépasser c quel que soit le référentiel où on mesure cette vitesse.

Considérons un mobile se déplaçant à la vitesse u' < c dans un référentiel \mathcal{R}' . Sa vitesse u mesurée dans un référentiel \mathcal{R} tel que $v(\mathcal{R}'/\mathcal{R}) = v < c$ est donc (en supposant les vitesses \mathbf{u} , \mathbf{u}' et \mathbf{v} colinéaires):

$$u = \frac{u' + v}{1 + \frac{u'v}{c^2}} \qquad \frac{u}{c} = \frac{\frac{u'}{c} + \frac{v}{c}}{1 + \frac{u'}{c} \frac{v}{c}}$$

Posons $\alpha' = u'/c$, $\alpha = u/c$ et $\beta = v/c$. On a :

$$0 \leqslant \alpha' = \frac{u'}{c} < 1$$
 et $0 \leqslant \beta = \frac{v}{c} < 1$

Comme $0 \le \alpha' < 1$, on en déduit que $0 < 1 - \alpha' \le 1$; En multipliant l'inégalité $\beta < 1$ par $(1 - \alpha') > 0$, on obtient ainsi :

$$(1-\alpha')\beta < 1-\alpha'$$
 d'où $\beta - \alpha'\beta < 1-\alpha'$ soit $\alpha' + \beta < 1+\alpha'\beta$

Et par conséquent,

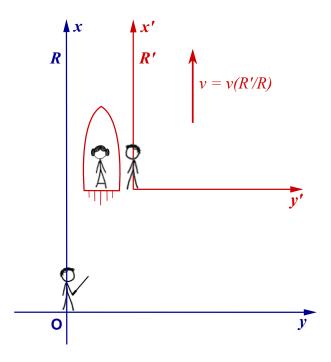
$$a = \frac{u}{c} = \frac{\frac{u'}{c} + \frac{v}{c}}{1 + \frac{v}{c}} = \frac{\alpha' + \beta}{1 + \alpha'\beta} < 1 \qquad i.e. \quad u < c$$

Pour un mobile se déplaçant à une vitesse u' < c dans un référentiel \mathcal{R}' , sa vitesse u mesurée dans tout autre référentiel sera elle aussi inférieure à c. De même, on peut montrer qu'un objet se déplaçant à la vitesse c dans un référentiel galiléen aura aussi une vitesse c dans tout autre référentiel galiléen, ce qui est cohérent avec les postulats de départ de la relativité.

2. Mouvement accéléré, référentiel tangent, mouvement hyperbolique

Leia effectue avec son vaisseau un mouvement rectiligne accéléré (donc non uniforme). À un instant donné (événement E_1), sa vitesse est v par rapport à Luke, inertiel (i.e. dépourvu d'accélération), et sa vitesse est nulle par rapport à Han, lui aussi inertiel. Un peu plus tard (événement E_2), après un temps dt' pour Han, la vitesse de Leia est passée à v + dv pour Luke, et à dv' pour Han.

2.1 — En utilisant la composition des vitesses, établissez l'expression de dv' en fonction de v et dv.



Soit \mathcal{R} le référentiel de Luke, resté à la base, qu'on supposera inertiel; on appelle \mathcal{R}' le référentiel de Han, c'est à dire le référentiel inertiel qui se confond avec celui de Leia à l'instant de l'événement E_1 . On désigne en général ce référentiel comme le référentiel inertiel tangent. Comme le mouvement de Leia est quelconque, le référentiel de Leia ne se confond avec \mathcal{R}' qu'à cet instant précis (événement E_1); mais rien n'empêche de procéder de même pour tous les événements qui constituent la

trajectoire de Leia dans l'espace-temps, et de définir à chaque instant un référentiel galiléen tangent (différent à chaque instant).

Lors de l'événement E_1 , qui se produit à l'instant t dans \mathcal{R} et t' dans \mathcal{R}' , la vitesse u du vaisseau de Leia est v (vitesse relative de \mathcal{R}' par rapport à \mathcal{R} , par construction), tandis qu'elle est bien évidemment nulle dans \mathcal{R}' .

Un instant plus tard, à l'événement E_2 , qui se produit à l'instant t + dt dans \mathcal{R} et à l'instant t' + dt' dans \mathcal{R}' , la vitesse du vaisseau de Leia est désormais $u_x = v + dv$ dans \mathcal{R} , et $u'_x = dv'$ dans le même référentiel tangent \mathcal{R}' défini en E_1 (avec τ le temps propre de Leia).

	\mathcal{R}	\mathcal{R}'
E_1	t	t'
	$u_x = v$	$u'_x = 0$
E_2	t + dt	$t' + \mathrm{d}t'$
	$u_x = v + \mathrm{d}v$	$u_x' = \mathrm{d}v'$

Pour déterminer dv', on applique la loi de composition des vitesses lors de l'événement E_2 , entre les référentiels \mathcal{R} et \mathcal{R}' :

$$u_x' = \frac{u_x - v}{1 - \frac{vu_x}{c^2}}$$

à l'instant t' + dt', avec $u_x = v + dv$ la vitesse du vaisseau dans \mathcal{R} , $u'_x = dv'$ la vitesse du vaisseau dans \mathcal{R}' . On obtient :

$$dv' = \frac{dv}{1 - \frac{v^2}{c^2} - \frac{v \, dv}{c^2}} \quad d'où \quad dv' \left[1 - \frac{v^2}{c^2} - \frac{v \, dv}{c^2} \right] = dv$$

On peut ici négliger le terme de second ordre $v \, dv \, dv'/c^2$, ce qui donne

$$dv' \left[1 - \frac{v^2}{c^2} \right] = dv \quad \text{soit} \quad dv' = \gamma^2(v) dv$$

2.2 — Quelle est l'expression de l'accélération propre a de Leia, en fonction de dv' et de dt'? Quelle est l'expression de la durée dt' en fonction de v et de dt? En déduire l'expression de la durée dt en fonction de a, v et dv.

L'accélération propre a de Leia s'écrit :

$$a = \frac{\mathrm{d}v'}{\mathrm{d}t'} = \frac{\mathrm{d}v'}{\mathrm{d}\tau}$$

où $d\tau$ est l'intervalle de temps propre de Leia entre E_1 et E_2 ; on aura $d\tau = dt'$ puisque les deux référentiels se confondent à l'instant de l'événement E_1 . Cette accélération propre peut être ressentie par Leia, sous la forme d'un poids apparent des objets dans la fusée (classiquement, on parle de force d'entraînement).

Par ailleurs, en utilisant l'invariance de l'intervalle d'espace-temps, on peut relier $dt' = d\tau$ et dt:

$$ds^{2} = c^{2}d\tau^{2} = c^{2}dt^{2} - dx^{2} = \left(1 - \frac{v^{2}}{c^{2}}\right)c^{2}dt^{2} = \frac{1}{\gamma^{2}(v)}c^{2}dt^{2} \quad \text{i.e.} \quad d\tau = dt' = \frac{1}{\gamma(v)}dt$$

On a ainsi:

$$dv' = \gamma^2(v) dv$$
 $dt' = \frac{1}{\gamma(v)} dt$ $d'où $a = \frac{dv'}{dt'} = \gamma^3(v) \frac{dv}{dt}$$

Ce qu'on peut ré-écrire sous la forme :

$$a dt = \gamma^3(v) dv$$
 ou encore $dt = \frac{\gamma^3(v)}{a} dv$ (17)

Afin de pouvoir intégrer cette dernière relation, et obtenir l'évolution temporelle v(t) dans le référentiel \mathcal{R} , il est nécessaire de connaître les variations temporelles de l'accélération propre a de Leia.

2.3 — En surveillant bien le poids (apparent) d'une masse test, Leia, pilote sa fusée en maintenant son accélération propre a constante. Sachant qu'elle a quitté Luke en douceur, avec une vitesse v(0) nulle à l'instant t=0, quelle est l'expression de sa vitesse v(t) à l'instant t pour Luke toujours inertiel?

On se place ici dans le cas très particulier où l'accélération propre a de Leia est supposée constante pendant toute la trajectoire. On peut alors intégrer l'équation (17).

Il est tout à fait possible d'intégrer directement l'équation (17), et d'obtenir ainsi v(t) et x(t). Toutefois, un changement de variable naturel et pratique dans l'étude des mouvements accélérés en relativité restreinte consiste à introduire la *rapidité* φ , définie par :

$$\tanh \varphi = \beta = \frac{v}{c}$$
 et par conséquent $d(\tanh \varphi) = d\beta = \frac{dv}{c}$.

On a de plus:

$$d\beta = \frac{dv}{c} = d(\tanh \varphi) = \frac{1}{\cosh^2 \varphi} d\varphi = (1 - \tanh^2 \varphi) d\varphi = (1 - \beta^2) d\varphi = \frac{1}{\gamma^2(v)} d\varphi$$

d'où,

$$\mathrm{d}v = \frac{c}{\cosh^2 \varphi} \, \mathrm{d}\varphi$$

On en déduit les relations suivantes, très pratiques :

$$\tanh \varphi = \beta = \frac{v}{c}$$
 $\cosh \varphi = \gamma(v)$ $\sinh \varphi = \beta \gamma(v)$

L'équation (17) peut ainsi s'écrire :

$$adt = \gamma^{3}(v) dv = \cosh^{3} \varphi \times \frac{c}{\cosh^{2} \varphi} d\varphi = c \cosh \varphi d\varphi$$

Avec l'hypothèse supplémentaire que l'accélération propre a est maintenue constante pendant toute la trajectoire de la fusée de Leia, on peut intégrer l'équation entre t=0 (départ de la fusée) et un instant t quelconque (attention, les notations sont abusives, le t de la borne de l'intégrale est différent de la variable d'intégration) :

$$\int_0^t a \, dt = \int_{v(0)}^{v(t)} \gamma^3(v) \, dv = \int_{\varphi(0)}^{\varphi(t)} \cosh \varphi \, d\varphi$$

D'où,

$$at = c \left(\sinh \varphi(t) - \sinh \varphi(0)\right) = c \sinh \varphi(t)$$

en considérant de plus que la vitesse initiale de la fusée dans \mathcal{R} est nulle à t=0: v(0)=0 et $\varphi(0)=0$. Cette dernière équation permet d'obtenir l'expression de la rapidité φ en fonction du temps dans \mathcal{R} , et donc de la vitesse v(t):

$$\varphi(t) = \operatorname{argsinh}\left(\frac{at}{c}\right) = \ln\left[\frac{at}{c} + \sqrt{\left(\frac{at}{c}\right)^2 + 1}\right]$$

Pour obtenir l'expression de la vitesse, on peut partir de cette dernière expression. En utilisant l'identité remarquable $\cosh^2\varphi-\sinh^2\varphi=1$, on peut écrire les expressions de $\sinh\varphi$ et $\cosh\varphi$:

$$\sinh \varphi(t) = \frac{at}{c}$$
 $\cosh \varphi(t) = \sqrt{1 + \sinh^2 \varphi(t)} = \sqrt{1 + \frac{a^2 t^2}{c^2}}$

Ce qui permet de calculer $\tanh \varphi$ et d'en déduire la vitesse de la fusée en fonction du temps :

$$\beta(t) = \frac{v(t)}{c} = \tanh \varphi = \frac{\sinh \varphi}{\cosh \varphi} = \frac{at/c}{\sqrt{1 + \frac{a^2t^2}{c^2}}} \qquad \text{et} \quad v(t) = \frac{at}{\sqrt{1 + \frac{a^2t^2}{c^2}}}$$

2.4 — En déduire l'expression de la position x(t) de Leia à l'instant t pour Luke.

Connaissant la vitesse v(t) de la fusée dans $\mathcal R$ (le référentiel de Luke), on peut intégrer directement l'expression :

$$dx = v(t) dt = \frac{at dt}{\sqrt{1 + \frac{a^2 t^2}{c^2}}}$$

On peut aussi utiliser de nouveau la rapidité, en exprimant dx en fonction de φ , ce qui donne :

$$dx = v(t) dt = c \tanh \varphi(t) \times \frac{c}{a} \cosh \varphi d\varphi = \frac{c^2}{a} \sinh \varphi d\varphi$$

Puis, en intégrant comme précédemment entre t=0 et un instant t quelconque (dans \mathcal{R}), on obtient directement :

$$\int_{x(0)}^{x(t)} dx = \int_{\varphi(0)}^{\varphi(t)} \frac{c^2}{a} \sinh \varphi \, d\varphi$$

Et, comme l'accélération propre a est supposée constante,

$$x(t) - x(0) = \frac{c^2}{a} \left(\cosh \varphi(t) - \cosh \varphi(0)\right) = \frac{c^2}{a} \left(\cosh \varphi(t) - 1\right) = \frac{c^2}{a} \left(\sqrt{1 + \frac{a^2 t^2}{c^2}} - 1\right).$$

Si la fusée de Leia est partie de l'origine à t = 0, i.e. x(0) = 0, sa position x(t) dans \mathcal{R} est :

$$x(t) = \frac{c^2}{a} \left(\sqrt{1 + \frac{a^2 t^2}{c^2}} - 1 \right).$$

2.5 — Quelles sont les expressions approchées de x(t) et de v(t) lorsque t est petit? lorsque t est grand? (par rapport à quoi d'ailleurs?) Représenter sur un graphe d'espace-temps dans le repère

(x,t) de Luke : (i) la ligne d'univers de Luke, (ii) la ligne d'univers de Leia, (iii) la ligne d'univers de Han, inertiel, qui à l'instant t_1 coïncide, en douceur, avec Leia. Pourquoi désigne-t-on ce type de mouvement comme "hyperbolique"?

Lorsque $at \ll c$, les expressions de la vitesse v(t) et de la position x(t) deviennent, à la limite :

$$v(t) = \frac{at}{\sqrt{1 + \frac{a^2 t^2}{c^2}}} \xrightarrow{at \ll c} at$$

et,

$$x(t) = \frac{c^2}{a} \left(\sqrt{1 + \frac{a^2 t^2}{c^2}} - 1 \right) \xrightarrow{at \ll c} \frac{c^2}{a} \left[1 + \frac{1}{2} \frac{a^2 t^2}{c^2} - 1 \right] = \frac{1}{2} a t^2.$$

On retrouve ainsi les équations d'un mouvement rectiligne à accélération constante de la mécanique classique.

Lorsque l'accélération propre a est suffisamment grande, ou bien si le mouvement accéléré dure suffisamment longtemps, autrement dit, pour $at \gg c$, on obtient :

$$\frac{at}{c} \gg 1 \qquad \frac{a^2t^2}{c^2} \gg 1 \qquad v(t) = \frac{at}{\sqrt{1 + \frac{a^2t^2}{c^2}}} \xrightarrow{at \gg c} \frac{at}{\sqrt{\frac{a^2t^2}{c^2}}} = c$$

et,

$$x(t) = \frac{c^2}{a} \left(\sqrt{1 + \frac{a^2 t^2}{c^2}} - 1 \right) \xrightarrow{at \gg c} \frac{c^2}{a} \left[\frac{at}{c} - 1 \right] = ct - \frac{c^2}{a}.$$

Pour une accélération propre suffisamment grande, ou en attendant suffisamment longtemps, la vitesse de la fusée tend vers c (et la position x(t) tend vers ct à une constante près).

Enfin, on peut remarquer que:

$$at = c \sinh \varphi(t)$$
 i.e. $\sinh \varphi(t) = \frac{at}{c}$

et,

$$x(t) = \frac{c^2}{a} \left(\cosh \varphi(t) - 1\right)$$
 i.e. $\cosh \varphi(t) = \frac{a}{c^2} x(t) + 1$.

D'où, en utilisant la même identité remarquable que précédemment,

$$\cosh^{2}\varphi(t) - \sinh^{2}\varphi(t) = 1 \qquad \left(\frac{a}{c^{2}}x + 1\right)^{2} - \left(\frac{at}{c}\right)^{2} = 1 \tag{18}$$

ce qui est l'équation d'une hyperbole dans le plan (x, ct). La trajectoire de la fusée de Leia dans l'espace-temps est ainsi la branche d'hyperbole positive décrite par (18). Cette hyperbole coupe l'axe Ox à l'origine; ses asymptotes sont les droites $ct = x - c^2/a$ et $ct = -x + c^2/a$ (voir figure 25).

Le mouvement de la fusée est bien entendu rectiligne dans le référentiel $\mathcal R$ de Luke, mais dans l'espace-temps, la ligne d'univers de Leia suit une hyperbole : c'est pourquoi on désigne parfois ce mouvement rectiligne à accélération propre constante comme un *mouvement hyperbolique*.

2.6 — Quelle est, en général, la durée $d\tau$ écoulée pour Leia, entre E_1 et E_2 , en fonction de dt'? en fonction de dt et de v? Lorsque Leia se dote d'un mouvement à accélération propre constante a, que devient cette durée $d\tau$ en fonction de dt, a et t?

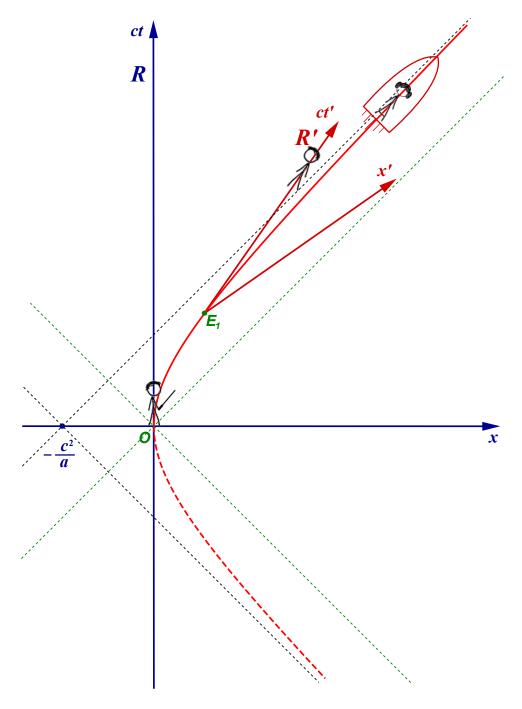


FIGURE 25 – Diagramme d'espace-temps (diagramme de Minkowski). Lignes d'univers de Luke, resté en x=0 (en bleu, axe Oct) et de Leia dans sa fusée (en rouge). La ligne d'univers de Leia est une hyperbole. Au point événement E_1 , le référentiel tangent (Han) \mathcal{R}' est tel qu'il se confond avec celui de Leia, à cet instant précis.

2.7 — En déduire le temps propre $\tau(t)$ à la montre de Leia, en fonction de a et de t pour Luke. Quelles sont les expressions approchées de $\tau(t)$ pour t petit? pour t grand?

D'après ce qui précède, on peut exprimer $\mathrm{d}\tau$ en fonction de la vitesse v(t) ou mieux, de la rapidité $\varphi(t)$:

$$d\tau = \frac{dt}{\gamma(v)} = \frac{\gamma^2(v)}{a} dv = \frac{c}{a} d\varphi.$$

Ainsi, l'intervalle élémentaire de temps propre $d\tau$ de Leia est bien directement proportionnel à l'incrément de rapidité $d\varphi$ mesuré dans \mathcal{R} .

En faisant l'hypothèse que Leia a réglé sa montre à $\tau=0$ au décollage de sa fusée, à t=0 dans \mathcal{R} , on peut par conséquent relier t et τ :

$$dt = -\frac{c}{a}\cosh\varphi d\varphi$$
 $d\tau = -\frac{c}{a}d\varphi$ $d'où$ $t = -\frac{c}{a}\sinh\varphi$ $\tau = -\frac{c}{a}\varphi$

Ce qui donne:

$$t = \frac{c}{a}\sinh\left(\frac{a}{c}\tau\right)$$
 et $\tau = \frac{c}{a}\operatorname{argsinh}\left(\frac{a}{c}t\right) = \frac{c}{a}\ln\left[\frac{at}{c} + \sqrt{\left(\frac{at}{c}\right)^2 + 1}\right]$.

Lorsque $at \ll c$, on retrouve la situation classique :

$$\tau = \frac{c}{a} \operatorname{argsinh} \left(\frac{a}{c} t \right) \xrightarrow{at \ll c} \frac{c}{a} \frac{a}{c} t = t$$

et le temps s'écoule de la même manière pour Luke et pour Leia.

Pour $at \gg c$, on obtient :

$$\tau = \frac{c}{a} \operatorname{argsinh} \left(\frac{a}{c} t \right) \xrightarrow{at \ll c} \frac{c}{a} \ln \left(\frac{2at}{c} \right)$$

2.8 — Leia se donne l'accélération "de confort" $a=g=9.8\,\mathrm{m.s^{-2}}$. Exprimez a en ly.y $^{-2}$ (année-lumière par année carrée). Calculez $\tau(t)$ après un mois, 3 mois, 1 an, 3 ans, 10 ans.

En utilisant l'expression qui donne τ en fonction de t,

$$\tau = \frac{c}{a} \operatorname{argsinh} \left(\frac{a}{c} t \right) = \frac{c}{a} \ln \left[\frac{at}{c} + \sqrt{\left(\frac{at}{c} \right)^2 + 1} \right].$$

on peut calculer le temps τ écoulé pour Leia dans la fusée en fonction du temps t qui s'est écoulé pour Luke, depuis le départ de Leia.

L'énoncé propose d'exprimer l'accélération propre a en année-lumière par année carrée, car dans ce cas, $a=9.8\,\mathrm{m.s^{-2}}\approx 1\,\mathrm{ly.y^{-2}}$, et $a/c\approx 1\,\mathrm{y^{-1}}$, ce qui simplifie les calculs numériques.

Si on n'effectue	pas pas cetto	e approximation,	on trouve	les résu	ltats suivants :
------------------	---------------	------------------	-----------	----------	------------------

t	1 mois	3 mois	1 an	3 ans	10 ans
	$2.6297 \times 10^6 \mathrm{s}$	$7.8892 \times 10^6 \mathrm{s}$	$3.1557 \times 10^7 \mathrm{s}$	$9.4671 \times 10^7 \mathrm{s}$	$3.1557 \times 10^8 \mathrm{s}$
φ	0.08585891	0.25511692	0.90352395	1.84798136	3.02915839
au	$2.6265 \times 10^6 \mathrm{s}$	$7.8043 \times 10^6 \mathrm{s}$	$2.7640 \times 10^7 \mathrm{s}$	$5.65317 \times 10^7 \mathrm{s}$	$9.2665 \times 10^7 \mathrm{s}$
			$\approx 10.5\mathrm{mois}$	≈ 1.8 an	$\approx 3\mathrm{ans}$
t- au	3228.19 s	84932.6 s	$3.91716 \times 10^6 \mathrm{s}$	$3.81391 \times 10^7 \mathrm{s}$	$2.22904 \times 10^8 \mathrm{s}$
	≈ 1 heure	≈ 1 jour	$\approx 1.5\mathrm{mois}$	$\approx 1.2\mathrm{an}$	≈ 7 ans

On constate ainsi que le temps s'écoule plus lentement pour Leia que pour Luke, et que l'effet est d'autant plus important que la durée du voyage est longue et que Leia voyage longtemps à des vitesses proches de celle de la lumière. Ainsi, au bout d'un mois de voyage, l'écart n'est que d'environ 1 heure, tandis qu'au bout de 10 ans pour Luke depuis le départ de Leia, il ne s'est écoulé que 3 ans pour Leia dans sa fusée (soit 7 ans de différence).

3. Le paradoxe des jumeaux

Luke et Leia dérivent dans l'espace, libres. Leia décide de quitter Luke en se donnant une accélération propre constante a=g pendant une durée finie $\Delta \tau$ (temps propre de Leia). Puis elle stoppe les turbopropulseurs à l'arrière de son vaisseau, allume ceux à l'avant qui lui fournissent désormais une accélération a=-g, et continue son voyage avec cette accélération propre pendant la durée $2\Delta \tau$. Enfin, elle arrête les propulseurs à l'avant et rallume les propulseurs à l'arrière, se donnant ainsi une accélération propre a=g pendant $\Delta \tau$ pour finir par couper ses turbopropulseurs. Pendant tout ce temps, occupé à autre chose, Luke est resté au repos.

3.1 — Représentez toute cette épopée sur un graphe d'espace-temps dans le repère de Luke.

Pendant chaque intervalle de temps $\Delta \tau$, la trajectoire de Leia est à accélération propre constante, et son mouvement est décrit par les résultats obtenus à l'exercice précédent (éventuellement, en inversant le sens du temps ou de x). Sa trajectoire dans l'espace-temps est donc constituée de quatre segments d'hyperbole identiques, comme représentée sur la figure 26.

3.2 — Calculez le temps $4\Delta\tau$ qui s'est écoulé pour Leia si toute cette histoire a duré $4\Delta t = 12$ mois pour Luke. Faites de même pour $4\Delta t = 12$ ans et pour $4\Delta t = 40$ ans. Concluez.

La vitesse v de Leia est nulle au départ (A), maximale $(v_{\rm max})$ en B lorsqu'elle éteint ses propulseurs arrière et allume les propulseurs avant, nulle au point C. Sa vitesse augmente ensuite en norme (mais est négative) de C à D, pour atteindre $v=-v_{\rm max}$ en D, avant de décroître jusqu'à zéro en E, fin de son épopée. On obtient ainsi une trajectoire physiquement réaliste, sans aucune discontinuité de la vitesse ou accélération infinie comme dans la présentation la plus simple du paradoxe des jumeaux.

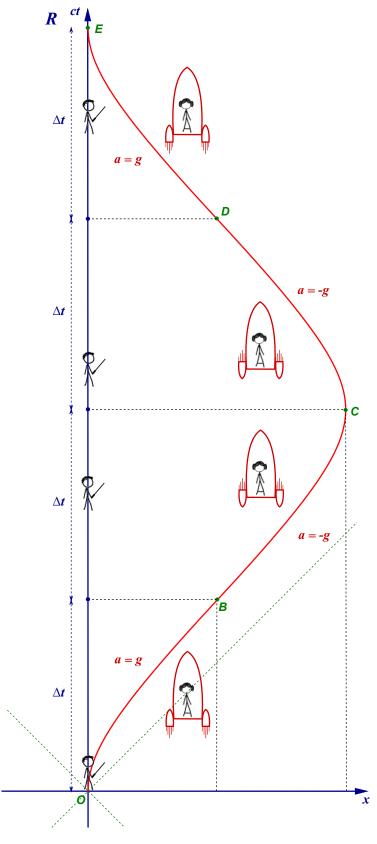


FIGURE 26 — Diagramme d'espace-temps (diagramme de Minkowski). Lignes d'univers de Luke, resté en x=0 (en bleu, axe Oct) et de Leia dans sa fusée (en rouge). Entre A et B, l'accélération propre a de Leia vaut g, et sa fusée accélère, et sa vitesse est maximale en B; entre B et C, a=-g et Leia décélère jusqu'à atteindre v=0 en C. De C à D, toujours avec a=-g, Leia voit sa vitesse devenir de plus en plus négative (elle accélère sur le chemin du retour), jusqu'à atteindre sa vitesse maximale (mais négative) en D. De D à E, a=g ce qui permet à Leia d'arriver au point de départ avec une vitesse nulle.

Le temps propre de Leia qui s'est écoulé pendant toute cette aventure s'écrit :

$$\begin{split} & \underset{A \to E}{\Delta} \tau = \int_A^E \mathrm{d}\tau = \int_A^E \frac{c}{a} \, \mathrm{d}\varphi = \frac{c}{g} \int_A^B \mathrm{d}\varphi - \frac{c}{g} \int_B^C \mathrm{d}\varphi - \frac{c}{g} \int_C^D \mathrm{d}\varphi + \frac{c}{g} \int_D^E \mathrm{d}\varphi \\ & = \frac{c}{g} \Big[\left(\varphi(B) - \varphi(A) \right) - \left(\varphi(C) - \varphi(B) \right) - \left(\varphi(D) - \varphi(C) \right) + \left(\varphi(E) - \varphi(D) \right) \Big] = 4 \frac{c}{g} \, \varphi_{\max} = 4 \Delta \tau \end{split}$$

$$\operatorname{car} \varphi(A) = \varphi(C) = \varphi(E) = 0, \ \varphi(B) = \varphi_{\max} \text{ et } \varphi(D) = -\varphi_{\max}.$$

On peut d'autre part calculer la rapidité maximale atteinte φ_{\max} , par exemple pendant le premier segment du voyage (où a=g):

$$dt = -\frac{c}{a}\cosh\varphi \,d\varphi \qquad \text{d'où} \quad \Delta t = -\frac{c}{g}\int_{A}^{B}\cosh\varphi \,d\varphi = -\frac{c}{g}\left(\sinh\varphi(B) - \sinh\varphi(A)\right) = -\frac{c}{g}\sinh\varphi_{\max}$$

Ce qui permet d'exprimer φ_{max} :

$$\varphi_{\text{max}} = \operatorname{argsinh}\left(\frac{g}{c}\Delta t\right)$$

On en déduit le temps $4\Delta\tau$ écoulé dans la fusée pour Leia :

$$\underset{A \rightarrow E}{\Delta \tau} = 4 \Delta \tau = 4 \frac{c}{g} \operatorname{argsinh} \left(\frac{g}{c} \Delta t \right)$$

Numériquement, on obtient les résultats suivants :

$4\Delta t$	12 mois	12 ans	40 ans
Δt	3 mois	3 ans	10 ans
	$7.8892 \times 10^6 \mathrm{s}$	$9.4671 \times 10^7 \mathrm{s}$	$3.1557 \times 10^8 \mathrm{s}$
$arphi_{max}$	0.25511692	1.84798136	3.02915839
$4\Delta au$	$3.12172 \times 10^7 \mathrm{s}$	$2.26127 \times 10^8 \mathrm{s}$	$3.70661 \times 10^8 \mathrm{s}$
		$\approx 7.2\mathrm{ans}$	$\approx 12\mathrm{ans}$
$4\Delta t - 4\Delta \tau$	339730 s	$1.5256 \times 10^8 \mathrm{s}$	$8.9162 \times 10^8 \mathrm{s}$
	≈ 4 jours	$\approx 4.8\mathrm{ans}$	$\approx 28\mathrm{ans}$

Ainsi, si le voyage de Leia dure 40 ans pour Luke, il n'aura duré que 12 ans pour Leia lorsqu'ils se rejoindront au point de départ où Luke est demeuré pendant toute cette aventure.

Il est important de noter que les référentiels respectifs de Luke et Leia ne sont pas équivalents : celui de Leia n'est pas galiléen, et Leia en a la preuve car elle ressent dans sa fusée un poids apparent lié à son accélération propre (dont le sens change avec le signe de *a*), et ce tout au long du voyage; ceci explique l'asymétrie entre les deux référentiels, et la différence d'âge à la fin du voyage.

4. Voyages intersidéraux

4.1 — Partant du système solaire, un vaisseau se rend à vitesse constante v sur une étoile située à D=8 années-lumière de la terre. Pour l'équipage de ce vaisseau, le voyage dure $\Delta \tau=8$ années. Quelle est la vitesse v du vaisseau dans le référentiel du système solaire?

La durée du voyage vue depuis le référentiel du système solaire est :

$$\Delta t = \gamma(v) \Delta \tau.$$

Avec $\gamma(v)$ constant puisque la vitesse est considérée comme constante pendant toute la durée du voyage, et $\Delta t = D/v$. On en déduit :

 $v = \frac{D}{\Delta t} = \frac{D}{\gamma \Delta \tau} = \frac{D}{\Delta \tau} \sqrt{1 - \frac{v^2}{c^2}}.$

Ainsi,

 $v^2 \left(1 + \frac{D^2}{c^2 \Delta \tau^2} \right) = \frac{D^2}{\Delta \tau^2}$

et

$$v = \frac{D}{\sqrt{\Delta \tau^2 + D^2/c^2}} \quad \text{soit} \quad \frac{v}{c} = \frac{D/c}{\sqrt{\Delta \tau^2 + D^2/c^2}}$$

Si on exprime D en années-lumière, et $\Delta \tau$ en années, on obtient numériquement :

$$\frac{v}{c} = \frac{8 \text{ ans}}{\sqrt{(8 \text{ ans})^2 + (8 \text{ ans})^2}} = \frac{1}{\sqrt{2}} \simeq 0.707 \text{ donc } v \simeq 0.707c$$

Dans la question précédente, on a négligé les phases d'accélération et de décélération du vaisseau ce qui rend le voyage irréaliste. On se propose plutôt d'effectuer le même voyage en deux phases : une phase d'accélération à accélération propre constante a jusqu'à mi-parcours, et une phase symétrique de décélération à accélération propre constante -a, de telle sorte que le vaisseau parte sans vitesse initiale et s'arrête à destination.

4.2 — Dessinez cette trajectoire sur un diagramme d'espace-temps dans le référentiel du système solaire.

Voir la figure 27.

On souhaite, comme précédemment, que le voyage dure $\Delta \tau = 8$ années pour les occupants du vaisseau.

4.3 — Soit \mathcal{R} le référentiel du système solaire (considéré comme galiléen) et \mathcal{R}' le référentiel tangent à la trajectoire du vaisseau à un instant t donné. Dans le référentiel tangent \mathcal{R}' , la vitesse du vaisseau est nulle à l'instant t (ou t'), et vaut $\mathrm{d}v'$ à l'instant $t+\mathrm{d}t$ (ou $t'+\mathrm{d}t'$). En utilisant la loi de composition des vitesses, montrer que

$$\mathrm{d}v' = \gamma^2(v)\mathrm{d}v$$

Dans le référentiel tangent, la vitesse du vaisseau est nulle à l'instant t' et vaut $dv' = a(\tau)d\tau$ à l'instant t' + dt'.

$$\begin{array}{c|cccc} & \mathcal{R} & \mathcal{R}' \\ \hline t' = \tau & u_x = v & u'_x = 0 \\ \hline t' + dt' = \tau + d\tau & u_x = v + dv & u'_x = dv' = a(\tau)d\tau \end{array}$$

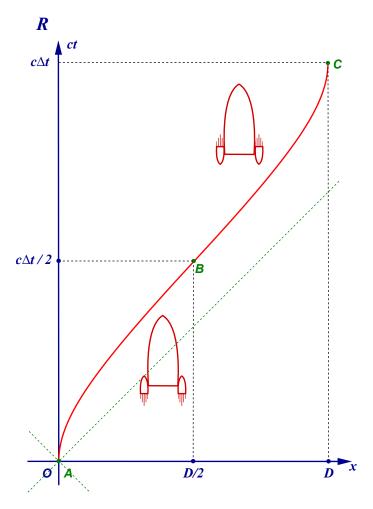


FIGURE 27 – Diagramme d'espace temps montrant la trajectoire du vaisseau dans le référentiel du système solaire. (A) départ à vitesse nulle, début de la phase d'accélération propre constante. (B) fin de la phase d'accélération, début de la décélération. (C) fin de la décélération, arrivée à vitesse nulle.

Pour déterminer dv', on applique la loi de composition des vitesses

$$u_x' = \frac{u_x - v}{1 - \frac{vu_x}{c^2}}$$

à l'instant $t' + dt' = \tau + d\tau$, avec $u_x = v + dv$ la vitesse du vaisseau dans \mathcal{R} , $u_x' = dv' = a(\tau)d\tau$ la vitesse du vaisseau dans \mathcal{R}' . Comme l'accélération est constante (mis à part le changement de signe au milieu du voyage), on a donc

$$dv' = ad\tau = \frac{dv}{1 - \frac{v^2}{c^2} - \frac{vdv}{c^2}} \quad d'où \quad dv' \left[1 - \frac{v^2}{c^2} - \frac{vdv}{c^2} \right] = dv$$

On peut ici négliger le terme de second ordre $v \, dv \, dv'/c^2$, ce qui donne

$$dv' \left[1 - \frac{v^2}{c^2} \right] = dv \quad \text{soit} \quad dv' = \gamma^2(v) dv$$

4.4 — Exprimez l'intervalle de temps propre $d\tau = dt'$ en fonction de de dt et $\gamma(v)$. Déduisez-en une expression de dv/dt en fonction de a et $\gamma(v)$.

De manière immédiate, $d\tau = dt' = dt/\gamma(v)$. En substituant dt', on obtient :

$$\frac{\mathrm{d}v'}{\mathrm{d}t'} = \gamma^3(v)\frac{\mathrm{d}v}{\mathrm{d}t} \quad \text{soit} \quad a = \gamma^3(v)\frac{\mathrm{d}v}{\mathrm{d}t}$$

4.5 — En utilisant les relations précédentes, montrez que $d\tau$ est proportionnel à $d\varphi$ où φ est la rapidité $(\beta = \tanh \varphi)$. En intégrant sur la première moitié du parcours du vaisseau, exprimez $\Delta \tau$ en fonction de la rapidité à mi-parcours $\varphi_{1/2}$.

Pour ce calcul, on fait intervenir la rapidité φ :

$$\tanh \varphi = \beta = \frac{v}{c}$$
 et par conséquent $\frac{\mathrm{d}(\tanh \varphi)}{\mathrm{d}v} = \frac{1}{c}$.

Or

$$d(\tanh \varphi) = \frac{1}{\cosh^2 \varphi} d\varphi = \frac{1}{\gamma^2(v)} d\varphi.$$

D'où

$$\frac{\mathrm{d}v}{\mathrm{d}\varphi} = \frac{c}{\gamma^2(v)}.$$

On reprend maintenant l'expression de $d\tau$:

$$d\tau = \frac{dt}{\gamma(v)} = \frac{\gamma^2(v)}{a} dv$$

Ce qui donne

$$d\tau = \frac{c}{a} d\varphi,$$

 $d\tau$ est donc bien proportionnel à $d\varphi$.

En intégrant sur la première moitié du parcours,

$$\frac{\Delta \tau}{2} = \int_0^{\Delta \tau/2} d\tau = \frac{c}{a} \int_0^{\varphi_{1/2}} d\varphi = \frac{c}{a} \varphi_{1/2}.$$

Et, par symétrie, la durée totale du voyage (pour l'équipage du vaisseau) est :

$$\Delta \tau = \frac{2c}{a} \, \varphi_{1/2}$$

4.6 — En se souvenant que dx = vdt, exprimez dx en fonction de $d\varphi$. Déduisez-en une expression de $\varphi_{1/2}$ en fonction de la distance totale à parcourir D.

On reprend les expressions trouvées aux questions précédentes :

$$a dt = \gamma^3(v) dv$$
 et $\frac{dv}{d\varphi} = \frac{c}{\gamma^2(v)} = \frac{c}{\cosh^2 \varphi}$.

On a donc

$$\gamma^3(v)dv = \gamma(v)cd\varphi = a dt$$
 et $dt = \frac{c}{a}\cosh\varphi d\varphi$.

Ainsi,

$$dx = v dt = c \tanh \varphi dt = \frac{c^2}{a} \sinh \varphi d\varphi,$$

d'où,

$$\frac{D}{2} = \int_0^{D/2} dx = \frac{c^2}{a} \int_0^{\varphi_{1/2}} \sinh \varphi \, \mathrm{d}\varphi \quad \text{et} \quad D = \frac{2c^2}{a} \left[\cosh \varphi_{1/2} - 1 \right].$$

Ainsi,

$$\varphi_{1/2} = \operatorname{argcosh} \left[\frac{Da}{2c^2} + 1 \right].$$

4.7 — On souhaite déterminer l'accélération a qui permettra à l'équipage d'effectuer ce voyage à la distance D=8 années-lumière en un temps propre de $\Delta \tau=8$ ans. Montrez que l'équation à résoudre est de la forme :

$$8\xi = \cosh\left(8\xi\right) - 1$$

La solution de cette équation est $8\xi \simeq 1.616$ soit $\xi \simeq 0.202$. Sachant que $c \times 1$ an $^{-1} \simeq 9.5\,\mathrm{m\cdot s^{-2}}$, Exprimez a en unités $c \times 1$ an $^{-1}$ et en unités SI.

À l'aide des résultats des deux questions précédentes, on a

$$\Delta \tau = \frac{2c}{a} \operatorname{argcosh} \left(\frac{Da}{2c^2} + 1 \right),$$

ce qui donne

$$\frac{Da}{2c^2} = \cosh\left(\frac{a\Delta\tau}{2c}\right) - 1.$$

Dans notre cas, D=8 a.l., $\Delta \tau=8$ ans et c=1 a.l./an. En posant

$$\xi = \frac{a}{2c},$$

on trouve bien l'équation :

$$8\xi = \cosh(8\xi) - 1.$$

Et on en déduit :

$$a = 2c\xi = 0.404 \text{ c/an} \approx 3.84 \text{ m s}^{-2}.$$

4.8 — Combien de temps dure le voyage pour les observateurs restés sur Terre? Exprimez Δt en fonction de c, a et $\varphi_{1/2}$. Application numérique.

On donne : $c \times 1$ an⁻¹ $\simeq 9.5$ m·s⁻², et $\sinh(1.616) \simeq 2.417$.

On repart de l'expression trouvée pour $\mathrm{d}t$:

$$dt = \frac{c}{a}\cosh\varphi\,d\varphi$$

On intègre:

$$\Delta t = \frac{2c}{a} \int_0^{\varphi_{1/2}} \cosh \varphi \, d\varphi = \frac{2c}{a} \sinh \varphi_{1/2}.$$

Ce qui donne numériquement :

$$\Delta t \approx 12 \text{ ans.}$$

FIGURE 28 – Calvin & Hobbes, Bill Waterson

3ème Partie

Formalisme quadrivectoriel — Invariants — Quadrivecteurs position, vitesse, accélération — Quadriforce — Tenseurs — composantes covariantes et contravariantes.

1. Propriétés des quadrivecteurs

1.1 — Soit un quadrivecteur $\tilde{\mathbf{A}}$. Montrez que le carré de sa pseudo-norme :

$$\begin{split} \widetilde{\mathbf{A}}^2 &= (A_t)^2 - (A_x)^2 - (A_y)^2 - (A_z)^2 = (A^0)^2 - (A^1)^2 - (A^2)^2 - (A^3)^2 \\ &= A_0 A^0 + A_1 A^1 + A_2 A^2 + A_3 A^3 = A_\mu A^\mu \end{split}$$

est invariant lorsqu'on passe d'un référentiel galiléen à un autre. Montrez, de même, que pour deux quadrivecteurs $\widetilde{\mathbf{A}}$ et $\widetilde{\mathbf{B}}$, le produit pseudo-scalaire :

$$\widetilde{\mathbf{A}} \cdot \widetilde{\mathbf{B}} = A^0 B^0 - A^1 B^1 - A^2 B^2 - A^3 B^3 = A_0 B^0 + A_1 B^1 + A_2 B^2 + A_3 B^3 = A_0 B^{\mu}$$

est invariant de Lorentz.

Il suffit de montrer que pour deux quadrivecteurs quelconques $\widetilde{\mathbf{A}}$ et $\widetilde{\mathbf{B}}$, le pseudo-produit scalaire $\widetilde{\mathbf{A}} \cdot \widetilde{\mathbf{B}} = A_{\mu}B^{\mu}$ est invariant de Lorentz. La pseudo-norme carrée correspond au cas particulier $\widetilde{\mathbf{A}} = \widetilde{\mathbf{B}}$.

Lors d'un changement de référentiel galiléen, les composantes contravariantes B^μ de $\widetilde{\mathbf{B}}$ se transforment selon :

$$B'^{\mu} = [\mathbf{L}]^{\mu}_{\ \nu} B^{\nu} \qquad \text{avec} \quad [\mathbf{L}]^{\mu}_{\ \nu} = \begin{pmatrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad [\mathbf{L}]^{\mu}_{\ \nu} = \frac{\partial x'^{\mu}}{\partial x^{\nu}}$$

À l'inverse, les composantes covariantes A_{μ} de $\widetilde{\mathbf{A}}$ se transforment par changement de référentiel inertiel selon la relation inverse :

$$A'_{\mu} = \begin{bmatrix} \bar{\mathbf{L}} \end{bmatrix}_{\mu}^{\nu} A_{\nu} \qquad \text{avec} \quad \begin{bmatrix} \bar{\mathbf{L}} \end{bmatrix}_{\mu}^{\nu} = \begin{pmatrix} \gamma & \beta \gamma & 0 & 0 \\ \beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \begin{bmatrix} \mathbf{L} \end{bmatrix} \begin{bmatrix} \bar{\mathbf{L}} \end{bmatrix} = \mathbf{1} \qquad \begin{bmatrix} \bar{\mathbf{L}} \end{bmatrix}_{\mu}^{\nu} = \frac{\partial x'_{\mu}}{\partial x_{\nu}} = \frac{\partial x'_{\mu}}{\partial x'^{\mu}}$$

Considérons maintenant le produit $\widetilde{A} \cdot \widetilde{B}$. Dans le référentiel \mathcal{R}' , il s'écrit :

$$\begin{split} \widetilde{\mathbf{A}}' \cdot \widetilde{\mathbf{B}}' &= A_{\mu}' B'^{\mu} = A_{0}' B'^{0} + A_{1}' B'^{1} + A_{2}' B'^{2} + A_{3}' B'^{3} \\ &= \gamma^{2} (A_{0} + \beta A_{1}) (B^{0} - \beta B^{1}) + \gamma^{2} (A_{1} + \beta A_{0}) (B^{1} - \beta B^{0}) + A_{2} B^{2} + A_{3} B^{3} \\ &= \gamma^{2} \left[A_{0} B^{0} - \beta A_{0} B^{1} + \beta A_{1} B^{0} - \beta^{2} A_{1} B^{1} + A_{1} B^{1} - \beta A_{1} B^{0} + \beta A_{0} B^{1} - \beta^{2} A_{0} B^{0} \right] \\ &+ A_{2} B^{2} + A_{3} B^{3} \\ &= \gamma^{2} (1 - \beta^{2}) \left(A_{0} B^{0} + A_{1} B^{1} \right) + A_{2} B^{2} + A_{3} B^{3} = A_{0} B^{0} + A_{1} B^{1} + A_{2} B^{2} + A_{3} B^{3} = A_{\mu} B^{\mu}. \end{split}$$

Le pseudo-produit scalaire $A_{\mu}B^{\mu}$ de deux quadrivecteurs quelconques $\widetilde{\mathbf{A}}$ et $\widetilde{\mathbf{B}}$ est bien invariant de Lorentz. Il s'ensuit que la pseudo-norme carrée $\widetilde{\mathbf{A}}^2 = A_{\mu}A^{\mu}$ de tout quadrivecteur $\widetilde{\mathbf{A}}$ l'est aussi.

1.2 — Montrez que l'intervalle de temps propre $d\tau$ est un invariant de Lorentz.

Soient deux événements E_1 et E_2 , observés depuis deux référentiels inertiels \mathcal{R} et \mathcal{R}' en translation uniforme l'un par rapport à l'autre. On suppose de plus que ces deux événements se produisent au même point dans \mathcal{R}' , où ils sont séparés par un petit intervalle de temps $\mathrm{d}t'$. on aura $\mathrm{d}x' = \gamma(\mathrm{d}x - \beta c\mathrm{d}t) = 0$, et donc $\mathrm{d}x = \beta c\mathrm{d}t = vt$. L'intervalle de temps $\mathrm{d}t'$ vaut ainsi :

$$cdt' = \gamma(cdt - dx) = \gamma(1 - \beta^2)dt = \frac{1}{\gamma}dt$$
 d'où $dt = \gamma dt' > dt'$

Le temps semble s'écouler plus lentement dans le référentiel \mathcal{R}' où les deux événements ont lieu au même point.

Ainsi, pour un observateur, le temps $\mathrm{d}\tau$ mesuré dans le référentiel qui lui est attaché semble toujours s'écouler plus lentement que dans tout autre référentiel : $\mathrm{d}t = \gamma \mathrm{d}\tau > \mathrm{d}\tau$. Le temps τ est le **temps propre** de l'observateur ; l'intervalle élémentaire de temps propre $\mathrm{d}\tau$ est un invariant car $\mathrm{d}s^2 = c^2 \mathrm{d}\tau^2$. et $\mathrm{d}s^2$ est un invariant de Lorentz.

1.3 — À partir du quadrivecteur position $\tilde{\mathbf{r}}$, construisez un quadrivecteur vitesse $\tilde{\mathbf{U}}$ qui obéisse aux transformations de Lorentz lorsqu'on passe d'un référentiel galiléen à un autre. Que vaut $\tilde{\mathbf{U}}^2 = U_\mu U^\mu$? Est-ce un invariant?

Considérons un mobile se déplaçant à la vitesse $\mathbf{u} = \mathrm{d}\mathbf{r}/\mathrm{d}t$ dans le référentiel \mathcal{R} (en toute généralité, le mouvement du mobile est quelconque, non nécessairement en translation uniforme). À tout instant t, pendant un intervalle de temps $\mathrm{d}t$, on peut raisonner dans le référentiel galiléen tangent au référentiel propre du mobile et établir que :

$$dt = \gamma(u)d\tau > d\tau$$

où u est la vitesse instantanée du mobile mesurée dans \mathcal{R} , et $\mathrm{d}\tau$ est l'intervalle de temps propre mesuré dans le référentiel propre du mobile. Comme $\mathrm{d}\tau$ est un invariant de Lorentz, on peut construire un quadrivecteur vitesse $\tilde{\mathbf{U}}$ dans \mathcal{R} en dérivant $\tilde{\mathbf{r}}$ par rapport à τ plutôt qu'à t:

$$\widetilde{\mathbf{U}} = \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}\tau} \quad U^{\mu} = \begin{pmatrix} \gamma(u)c\\ \gamma(u)\mathbf{u} \end{pmatrix} \quad \text{avec} \quad \mathbf{u} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}.$$

La pseudo-norme carrée du quadrivecteur vitesse est :

$$\widetilde{\mathbf{U}}^2 = \eta_{\mu\nu} U^{\mu} U^{\nu} = c^2.$$

qui est évidemment un invariant de Lorentz (c est invariant).

2. Vitesse relative

Vus d'un référentiel \mathcal{R} , Luke et Han Solo se déplacent aux vitesses constantes \mathbf{u}_L et \mathbf{u}_H respectivement. On cherche à déterminer leur vitesse relative en fonction de \mathbf{u}_L et \mathbf{u}_H sans utiliser les transformations de Lorentz. En utilisant l'invariance du produit scalaire des quadri-vitesses $\widetilde{\mathbf{U}}_L$ et $\widetilde{\mathbf{U}}_H$ par changement de repère, déterminer le facteur $\gamma(\mathbf{u}_{L/H})$ de Luke par rapport à Han. En déduire la norme de la vitesse relative de Luke par rapport à Han.

Dans le référentiel \mathcal{R} , les quadrivecteurs vitesse respectifs de Han et Luke ont pour composantes contravariantes :

$$\widetilde{\mathbf{U}}_H : U_H^{\mu} = (\gamma(\mathbf{u}_H)c, \gamma(\mathbf{u}_H)\mathbf{u}_H)$$

$$\widetilde{\mathbf{U}}_L : U_L^{\mu} = (\gamma(\mathbf{u}_L)c, \gamma(\mathbf{u}_L)\mathbf{u}_L)$$

Dans le référentiel de Han $\mathcal{R}' = \mathcal{R}_H$, la vitesse de Han est nulle, et les quadrivecteurs vitesse s'écrivent par conséquent :

$$\widetilde{\mathbf{U}}_{H}': U_{H}'^{\mu} = (c, \mathbf{0})$$

$$\widetilde{\mathbf{U}}_{L}': U_{L}'^{\mu} = (\gamma(\mathbf{u}_{L/H})c, \gamma(\mathbf{u}_{L/H})\mathbf{u}_{L/H})$$

où $\mathbf{u}_{L/H}$ est la vitesse de Luke par rapport à Han, mesurée dans \mathcal{R}_H .

Le pseudo-produit scalaire $\widetilde{\mathbf{U}}_H \cdot \widetilde{\mathbf{U}}_L$ étant invariant de Lorentz, on a par conséquent :

$$\widetilde{\mathbf{U}}_H \cdot \widetilde{\mathbf{U}}_L = \widetilde{\mathbf{U}}_H' \cdot \widetilde{\mathbf{U}}_L'$$

Soit:

$$\gamma(\mathbf{u}_H)\gamma(\mathbf{u}_L) c^2 - \gamma(\mathbf{u}_H)\gamma(\mathbf{u}_L)\mathbf{u}_H \cdot \mathbf{u}_L = \gamma(\mathbf{u}_{L/H}) c^2$$

Ce qui permet d'en déduire $\gamma(\mathbf{u}_{L/H})$:

$$\gamma(\mathbf{u}_{L/H}) = \gamma(\mathbf{u}_H)\gamma(\mathbf{u}_L) \left[1 - \frac{\mathbf{u}_H \cdot \mathbf{u}_L}{c^2}\right]$$

Ainsi que la norme $u_{L/H}$ de la vitesse relative de Luke par rapport à Han Solo :

$$u_{L/H} = c\sqrt{1 - \frac{1}{\gamma(\mathbf{u}_{L/H})^2}}.$$

3. Quadri-vitesses et composition relativiste des vitesses

Remarque : pour cet exercice, afin d'éviter toute confusion, soyez précis : il est essentiel d'exprimer les différents facteurs β et γ en jeu en indiquant à chaque fois la vitesse utilisée dans l'expression des facteurs β et γ : par exemple, $\gamma(v)$ ou bien $\gamma(u)$, etc.

On considère deux référentiels galiléens \mathcal{R} et \mathcal{R}' , avec $\mathbf{v} = \mathbf{v}(\mathcal{R}'/\mathcal{R})$ la vitesse de \mathcal{R}' par rapport à \mathcal{R} . On munit ces deux référentiels de repères orthonormés parallèles et du même trièdre $\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$, de telle sorte que $\mathbf{v} = v \, \mathbf{e}_x$. On suppose ces deux référentiels munis d'horloges parfaites, et on choisit l'origine des temps t = t' = 0 lorsque l'origine O' se confond avec O.

On s'intéresse au mouvement d'un objet matériel M, dont la position est repérée par son vecteur position $\mathbf{r}(t) = \mathbf{OM}$ dans \mathcal{R} , et par son vecteur position $\mathbf{r}'(t') = \mathbf{O'M}$.

3.1 — Rappelez comment se transforment les coordonnées $(ct, \mathbf{r}) = (ct, x, y, z)$ d'un point de la trajectoire de l'objet M lorsqu'on passe du référentiel \mathcal{R} au référentiel \mathcal{R}' . Montrez que ces relations peuvent se mettre sous forme matricielle.

Lorsqu'on passe d'un référentiel galiléen \mathcal{R} (ou inertiel) à un autre référentiel galiléen \mathcal{R}' , les coordonnées (ct,\mathbf{r}) d'un événement (ici, un point de la trajectoire du mobile étudié, autrement dit un point-événement de la *ligne d'univers* de cet objet) se transforment selon les équations de la *transformation de Lorentz*, qui ici s'écrit :

$$\begin{cases} ct' &= \gamma(v) \left(ct - \beta(v) x \right) \\ x' &= \gamma(v) \left(x - \beta(v) ct \right) \\ y' &= y \\ z' &= z \end{cases}$$
 et réciproquement
$$\begin{cases} ct &= \gamma(v) \left(ct' + \beta(v) x' \right) \\ x &= \gamma(v) \left(x' + \beta(v) ct' \right) \\ y &= y' \\ z &= z' \end{cases}$$

où (ct', \mathbf{r}') sont les coordonnées du même événement dans \mathcal{R}' , et où on a posé :

$$\beta(v) = \frac{v}{c} \qquad \text{et} \qquad \gamma(v) = \left(1 - \beta(v)^2\right)^{-1/2} = \left(1 - \frac{v^2}{c^2}\right)^{-1/2} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

On peut mettre ces équations sous une forme matricielle :

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma(v) & -\beta(v)\gamma(v) & 0 & 0 \\ -\beta(v)\gamma(v) & \gamma(v) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma(v) & +\beta(v)\gamma(v) & 0 & 0 \\ +\beta(v)\gamma(v) & \gamma(v) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix}$$

3.2 — Rappelez la définition de la vitesse ordinaire \mathbf{u} du mobile M mesurée dans le référentiel \mathcal{R} ; faites de même pour sa vitesse \mathbf{u}' mesurée cette fois dans \mathcal{R}' . On notera (u_x, u_y, u_z) les composantes de la vitesse \mathbf{u} dans \mathcal{R} , et (u_x', u_y', u_z') les composantes de \mathbf{u}' dans \mathcal{R}' .

La vitesse $\mathbf{u} = u_x \, \mathbf{e}_x + u_y \, \mathbf{e}_y + u_z \, \mathbf{e}_z$ du mobile dans \mathcal{R} est simplement la dérivée du vecteur position \mathbf{r} par rapport au temps t dans le référentiel \mathcal{R} ,

$$\mathbf{u} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = u_x \, \mathbf{e}_x + u_y \, \mathbf{e}_y + u_z \, \mathbf{e}_z \qquad u_x = \frac{\mathrm{d}x}{\mathrm{d}t} \qquad u_y = \frac{\mathrm{d}y}{\mathrm{d}t} \qquad u_z = \frac{\mathrm{d}z}{\mathrm{d}t}.$$

De même, la vitesse $\mathbf{u}' = u_x' \mathbf{e}_x + u_y' \mathbf{e}_y + u_z' \mathbf{e}_z$ est la dérivée du vecteur position \mathbf{r}' par rapport au temps t' dans le référentiel \mathcal{R}' ,

$$\mathbf{u}' = \frac{\mathrm{d}\mathbf{r}'}{\mathrm{d}t'} = u_x' \, \mathbf{e}_x + u_y' \, \mathbf{e}_y + u_z' \, \mathbf{e}_z \qquad u_x' = \frac{\mathrm{d}x'}{\mathrm{d}t'} \qquad u_y' = \frac{\mathrm{d}y'}{\mathrm{d}t'} \qquad u_z' = \frac{\mathrm{d}z'}{\mathrm{d}t'}.$$

3.3 — Donnez la définition du quadrivecteur vitesse $\widetilde{\mathbf{U}}$ (quadri-vitesse), de composantes U^{μ} ($\mu=0,1,2,3$) pour l'objet étudié ; donnez l'expression de ses 4 composantes U^{μ} dans le référentiel \mathcal{R} . Faites de même pour les 4 composantes U'^{μ} de la quadri-vitesse $\widetilde{\mathbf{U}}'$ dans le référentiel \mathcal{R}' .

Par définition, pour un objet mobile, son quadrivecteur vitesse est la dérivée de son quadrivecteur position $\tilde{\mathbf{r}}$ par rapport à son temps propre τ :

$$\widetilde{\mathbf{U}} = \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}\tau} = \frac{\mathrm{d}t}{\mathrm{d}\tau} \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}t} = \gamma(u) \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}t} \qquad \text{avec} \qquad \gamma(u) = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$U^{\mu} = \gamma(u) \frac{\mathrm{d}r^{\mu}}{\mathrm{d}t} = \begin{pmatrix} \gamma(u) \frac{\mathrm{d}(ct)}{\mathrm{d}t} \\ \gamma(u) \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \end{pmatrix} = \begin{pmatrix} \gamma(u) c \mathrm{d}t/\mathrm{d}t \\ \gamma(u) dx/\mathrm{d}t \\ \gamma(u) dy/\mathrm{d}t \\ \gamma(u) dz/\mathrm{d}t \end{pmatrix} = \begin{pmatrix} \gamma(u) c \\ \gamma(u) u_x \\ \gamma(u) u_y \\ \gamma(u) u_z \end{pmatrix} = \begin{pmatrix} \gamma(u) c \\ \gamma(u) u_x \\ \gamma(u) u_y \\ \gamma(u) u_z \end{pmatrix}$$

Où u est le vecteur vitesse usuel $\mathbf{u} = \mathrm{d}\mathbf{r}/\mathrm{d}t$ de composantes (u_x, u_y, u_z) et de norme u, vu dans le référentiel \mathcal{R} .

De la même manière, on aura dans le référentiel \mathcal{R}' :

$$\widetilde{\mathbf{U}}' = \frac{\mathrm{d}\widetilde{\mathbf{r}}'}{\mathrm{d}\tau} = \frac{\mathrm{d}t'}{\mathrm{d}\tau} \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}t'} = \gamma(u') \frac{\mathrm{d}\widetilde{\mathbf{r}}'}{\mathrm{d}t'} \qquad \text{avec} \qquad \gamma(u') = \frac{1}{\sqrt{1 - \frac{u'^2}{c^2}}}$$

$$U'^{\mu} = \gamma(u') \frac{\mathrm{d}r'^{\mu}}{\mathrm{d}t'} = \begin{pmatrix} \gamma(u') \frac{\mathrm{d}(ct')}{\mathrm{d}t'} \\ \gamma(u') \frac{\mathrm{d}\mathbf{r}'}{\mathrm{d}t'} \end{pmatrix} = \begin{pmatrix} \gamma(u') \cot'/\mathrm{d}t' \\ \gamma(u') dx'/\mathrm{d}t' \\ \gamma(u') dy'/\mathrm{d}t' \\ \gamma(u') dz'/\mathrm{d}t' \end{pmatrix} = \begin{pmatrix} \gamma(u') c \\ \gamma(u') u'_x \\ \gamma(u') u'_y \\ \gamma(u') u'_z \end{pmatrix} = \begin{pmatrix} \gamma(u') c \\ \gamma(u') u'_x \\ \gamma(u') u'_y \\ \gamma(u') u'_z \end{pmatrix}$$

Où \mathbf{u}' est le vecteur vitesse usuel $\mathbf{u}' = \mathrm{d}\mathbf{r}'/\mathrm{d}t'$ de composantes (u_x', u_y', u_z') et de norme u', qui représente cette fois la vitesse du mobile dans le référentiel \mathcal{R}' .

3.4 — Que vaut $\widetilde{\mathbf{U}}^2$? Est-ce un invariant de Lorentz?

La pseudo-norme carrée du quadrivecteur vitesse s'écrit :

$$\widetilde{\mathbf{U}}^2 = \gamma^2(u)c^2 - \gamma^2(u)u^2 = \gamma^2(u)c^2 \left[1 - \frac{u^2}{c^2}\right] = c^2$$

car $\gamma^2(u)=[1-u^2/c^2]^{-1}$. Par construction, $\widetilde{\mathbf{U}}^2$ est le pseudo-produit scalaire d'un quadrivecteur par lui-même : c'est donc un invariant de Lorentz. On le vérifie dans ce cas particulier, car la vitesse de la lumière dans le vide c, et donc c^2 sont justement des invariants relativistes (c'est l'un des deux postulats de la relativité restreinte).

De plus, $\widetilde{\mathbf{U}}^2 = c^2$ est non seulement un invariant, mais aussi une grandeur constante.

3.5 — Comment les composantes U^{μ} de la quadri-vitesse $\widetilde{\mathbf{U}}$ se transforment-elles lorsqu'on passe de \mathcal{R} à \mathcal{R}' ? Calculez explicitement les 4 composantes U'^{μ} de la quadrivitesse $\widetilde{\mathbf{U}}'$ du mobile dans le référentiel \mathcal{R}' .

La quadri-vitesse $\widetilde{\mathbf{U}}$ est un quadrivecteur : ses composantes (contravariantes) U^{μ} se transforment donc selon la transformation de Lorentz, qui s'écrit ici :

$$\begin{pmatrix} U'^0 \\ U'^1 \\ U'^2 \\ U'^3 \end{pmatrix} = \begin{pmatrix} \gamma(v) & -\beta(v)\gamma(v) & 0 & 0 \\ -\beta(v)\gamma(v) & \gamma(v) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U^0 \\ U^1 \\ U^2 \\ U^3 \end{pmatrix}$$

Ce qui peut encore s'écrire, en remplaçant les composantes U^{μ} et U'^{μ} par leurs expressions,

$$\begin{pmatrix} \gamma(u') c \\ \gamma(u') u'_x \\ \gamma(u') u'_y \\ \gamma(u') u'_z \end{pmatrix} = \begin{pmatrix} \gamma(v) & -\beta(v)\gamma(v) & 0 & 0 \\ -\beta(v)\gamma(v) & \gamma(v) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \gamma(u) c \\ \gamma(u) u_x \\ \gamma(u) u_y \\ \gamma(u) u_z \end{pmatrix}$$

Soit,

$$\begin{cases}
\gamma(u') c = \gamma(v)\gamma(u) [c - \beta(v)u_x] \\
\gamma(u') u'_x = \gamma(v)\gamma(u) [u_x - \beta(v)c] = \gamma(v)\gamma(u) [u_x - v] \\
\gamma(u') u'_y = \gamma(u) u_y \\
\gamma(u') u'_z = \gamma(u) u_z.
\end{cases}$$
(19)

3.6 — À partir des équations précédentes, redémontrez la loi relativiste de composition des vitesses qui fournit les expressions de u'_x , u'_y et u'_z en fonction de u_x , u_y , u_z et v.

En utilisant la première ligne du système d'équations (19), on obtient immédiatement :

$$\gamma(v)\frac{\gamma(u)}{\gamma(u')} = \frac{c}{c - \beta(v)u_x} = \frac{1}{1 - \frac{vu_x}{c^2}}.$$

En utilisant l'expression précédente, et en substituant dans les 3 dernières lignes de (19), on trouve :

$$\begin{cases} u'_x &= \gamma(v)\frac{\gamma(u)}{\gamma(u')} \left[u_x - v \right] = \frac{u_x - v}{1 - \frac{vu_x}{c^2}} \\ u'_y &= \frac{\gamma(u)}{\gamma(u')} u_y = \frac{1}{\gamma(v)} \frac{u_y}{1 - \frac{vu_x}{c^2}} \\ u'_z &= \frac{\gamma(u)}{\gamma(u')} u_z = \frac{1}{\gamma(v)} \frac{u_z}{1 - \frac{vu_x}{c^2}} \end{cases}$$

On retrouve ainsi la loi relativiste de composition des vitesses.

4. Quadri-accélération

4.1 — Pour un mobile, on construit son quadrivecteur accélération (ou "quadri-accélération") en dérivant son quadrivecteur vitesse par rapport à son temps propore. Retrouver les expressions des composantes temporelles A^0 et spatiales $\mathbf A$ de la quadri-accélération d'une particule $\widetilde{\mathbf A}$ en un événement où, dans un repère inertiel, sa vitesse et son accélération valent respectivement $\mathbf u$ et $\dot{\mathbf u}$.

Le quadrivecteur accélération $\widetilde{\mathbf{A}}$ est la dérivée du quadrivecteur vitesse $\widetilde{\mathbf{U}}$ par rapport au temps propre τ de l'objet en mouvement. En dérivant par rapport à τ , on obtient :

$$\widetilde{\mathbf{A}} = \frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau} \qquad A^{\mu} = \frac{\mathrm{d}U^{\mu}}{\mathrm{d}\tau} = \frac{\mathrm{d}t}{\mathrm{d}\tau} \frac{\mathrm{d}U^{\mu}}{\mathrm{d}t} = \begin{pmatrix} \gamma^{4}(u) \frac{\mathbf{u} \cdot \dot{\mathbf{u}}}{c} \\ \gamma^{4}(u) \frac{\mathbf{u} \cdot \dot{\mathbf{u}}}{c^{2}} \mathbf{u} + \gamma^{2}(u) \dot{\mathbf{u}} \end{pmatrix} \qquad \text{avec} \quad \mathbf{u} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \qquad \dot{\mathbf{u}} = \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}$$

Pour ce calcul, il est important de se souvenir qu'ici la vitesse u n'est pas constante, et par conséquent le facteur relativiste $\gamma(\mathbf{u})$ ne l'est pas non plus. Sa dérivée par rapport au temps propre τ s'écrit :

$$\frac{\mathrm{d}\gamma(\mathbf{u})}{\mathrm{d}\tau} = \frac{\mathrm{d}t}{\mathrm{d}\tau} \frac{\mathrm{d}\gamma(\mathbf{u})}{\mathrm{d}t} = \gamma(\mathbf{u}) \frac{\mathrm{d}}{\mathrm{d}t} \left(1 - \frac{\mathbf{u}^2}{c^2}\right)^{-1/2} = \gamma^4(\mathbf{u}) \frac{\mathbf{u}}{c^2} \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \gamma^4(\mathbf{u}) \frac{\mathbf{u} \cdot \dot{\mathbf{u}}}{c^2}.$$

4.2 — En déduire les valeurs A'^0 et \mathbf{A}' des composantes de ce même quadrivecteur accélération dans un repère inertiel où la vitesse est nulle et l'accélération (dite alors propre) vaut a.

Si on se place dans le référentiel \mathcal{R}^* tangent à l'objet en mouvement à un instant donné, référentiel où, à l'instant considéré, la vitesse \mathbf{u} est nulle (mais $\dot{\mathbf{u}}$ ne l'est pas), et où $\dot{\mathbf{u}}=\mathbf{a}$, les composantes de $\widetilde{\mathbf{A}}^*$ s'écrivent :

$$A^{*\mu} = \begin{pmatrix} A^{*0} \\ \mathbf{A}^* \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{a} \end{pmatrix}$$

On trouve immédiatement que la pseudo-norme carrée de $\widetilde{\mathbf{A}}^*$ vaut $(\widetilde{\mathbf{A}}^*)^2 = -a^2$, où a est l'accélération propre (*i.e.* mesurée dans le référentiel propre de l'objet). Comme il s'agit d'un invariant de Lorentz, dans tout référentiel inertiel on aura $\widetilde{\mathbf{A}}^2 = -a^2$.

4.3 — En déduire l'expression de a^2 en fonction de u et de \dot{u} .

En utilisant l'invariance de la pseudo-norme carrée de $\widetilde{\mathbf{A}}$, on obtient :

$$\widetilde{\mathbf{A}}^{\prime 2} = \widetilde{\mathbf{A}}^2$$
 soit $-a^2 = (A^0)^2 - \mathbf{A}^2$

Ce qui donne, en développant,

$$\begin{split} -a^2 &= \gamma^8(u) \frac{(\mathbf{u} \cdot \dot{\mathbf{u}})^2}{c^2} - \gamma^8(u) \frac{(\mathbf{u} \cdot \dot{\mathbf{u}})^2}{c^4} - \gamma^4(u) \dot{\mathbf{u}}^2 - 2\gamma^6(u) \frac{(\mathbf{u} \cdot \dot{\mathbf{u}})^2}{c^2} \\ &= \gamma^8(u) \frac{(\mathbf{u} \cdot \dot{\mathbf{u}})^2}{c^2} \left[1 - \frac{\mathbf{u}^2}{c^2} \right] - \gamma^4(u) \dot{\mathbf{u}}^2 - 2\gamma^6(u) \frac{(\mathbf{u} \cdot \dot{\mathbf{u}})^2}{c^2} \\ &= -\gamma^6(u) \frac{(\mathbf{u} \cdot \dot{\mathbf{u}})^2}{c^2} - \gamma^4(u) \dot{\mathbf{u}}^2. \end{split}$$

Soit,

$$a^{2} = \gamma^{6}(u) \frac{(\mathbf{u} \cdot \dot{\mathbf{u}})^{2}}{c^{2}} + \gamma^{4}(u) \dot{\mathbf{u}}^{2}.$$

4.4 — Que devient cette expression dans le cas d'une accélération longitudinale, c'est à dire lorsque $\dot{\mathbf{u}}$ est parallèle à \mathbf{u} ?

On peut ré-écrire l'expression précédente en multipliant le second terme par $\gamma^2(u)$ $(1-\mathbf{u}^2/c^2)=1$, ce qui donne :

$$a^2 = \gamma^6(u)\frac{(\mathbf{u}\cdot\dot{\mathbf{u}})^2}{c^2} + \gamma^6(u)\left(1-\frac{\mathbf{u}^2}{c^2}\right)\dot{\mathbf{u}}^2 = \gamma^6(u)\left[\dot{\mathbf{u}}^2 + \frac{(\mathbf{u}\cdot\dot{\mathbf{u}})^2}{c^2} - \frac{\mathbf{u}^2\,\dot{\mathbf{u}}^2}{c^2}\right] = \gamma^6(u)\dot{\mathbf{u}}^2 - \gamma^6(u)\frac{(\mathbf{u}\times\dot{\mathbf{u}})^2}{c^2}$$

où on a utilisé l'égalité suivante pour deux vecteurs quelconques P et Q:

$$P^{2}Q^{2} = \mathbf{P}^{2}\mathbf{Q}^{2} = (\mathbf{P} \cdot \mathbf{Q})^{2} + (\mathbf{P} \times \mathbf{Q})^{2}.$$

Dans le cas particulier d'une accélération longitudinale, on a $\dot{\bf u}//{\bf u}$ et par conséquent le produit vectoriel ${\bf u}\times\dot{\bf u}$ s'annule. Il reste alors :

$$a^2 = \gamma^6(u)\dot{\mathbf{u}}^2$$
 soit $a = \gamma^3(u)\dot{u} = \gamma^3(u)\frac{\mathrm{d}u}{\mathrm{d}t}$.

On retrouve ainsi le résultat obtenu lors de l'étude des mouvements accélérés (exercices de la fusée, des jumeaux, etc).

4.5 — Montrez que le pseudo-produit scalaire $\widetilde{\mathbf{U}} \cdot \widetilde{\mathbf{A}}$ est toujours nul; autrement dit, que les quadrivecteurs vitesse et accélération sont "orthogonaux" au sens des quadrivecteurs.

On a construit le quadrivecteur accélération (*quadri-accélération*) en dérivant le quadrivecteur vitesse par rapport au temps propre du mobile ($d\tau$ est un invariant de Lorentz):

$$\widetilde{\mathbf{A}} = \frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau}$$
 soit $A^{\mu} = \frac{\mathrm{d}U^{\mu}}{\mathrm{d}\tau}$ $\mu = 0, 1, 2, 3$.

D'autre part, comme la pseudo-norme carrée $\widetilde{\mathbf{U}}^2$ de la quadri-vitesse $\widetilde{\mathbf{U}}$ est une constante, sa dérivée par rapport au temps propre est nulle :

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\widetilde{\mathbf{U}}^2 \right) = 0 \qquad \text{d'où} \qquad 2 \, \widetilde{\mathbf{U}} \cdot \frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau} = 0$$

On en déduit :

$$\widetilde{\mathbf{U}} \cdot \widetilde{\mathbf{A}} = \widetilde{\mathbf{U}} \cdot \frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau} = 0.$$

Les quadrivecteurs vitesse \widetilde{U} et accélération \widetilde{A} d'un objet sont donc toujours "orthogonaux" au sens des quadrivecteurs. On peut vérifier de manière immédiate que c'est notamment le cas dans le référentiel inertiel tangent au mobile étudié. En effet, dans le référentiel inertiel tangent \mathcal{R}^* , les composantes de \widetilde{U}^* et \widetilde{A}^* se réduisent à :

$$U^{*\mu} = \begin{pmatrix} U^{*0} \\ \mathbf{U}^* \end{pmatrix} = \begin{pmatrix} c \\ \mathbf{0} \end{pmatrix} \qquad A^{*\mu} = \begin{pmatrix} A^{*0} \\ \mathbf{A}^* \end{pmatrix} = \begin{pmatrix} 0 \\ \mathbf{a} \end{pmatrix}$$

D'où il vient immédiatement que le produit pseudo-scalaire de $\widetilde{\mathbf{U}}^*$ et $\widetilde{\mathbf{A}}^*$ est nul :

$$\widetilde{\mathbf{U}}^* \cdot \widetilde{\mathbf{A}}^* = U^{*0}U^{*0} - \mathbf{U}^* \cdot \mathbf{A}^* = c \times 0 - \mathbf{0} \cdot \mathbf{a} = 0$$

Comme c'est un invariant de Lorentz, ce résultat est vrai dans tous les référentiels inertiel, et on a toujours $\widetilde{\mathbf{U}} \cdot \widetilde{\mathbf{A}} = 0$: les quadrivecteurs vitesse et accélération sont "orthogonaux" au sens des quadrivecteurs.

5. Quadri-force

Considérons une particule de quadri-vitesse $\widetilde{\mathbf{U}}$ qui subit une quadriforce $\widetilde{\mathbf{f}} = \mathrm{d}\widetilde{\mathbf{p}}/\mathrm{d}\tau$.

5.1 — Rappeler ce que vaut $\widetilde{\mathbf{U}}^2 = U_{\mu}U^{\mu}$. Déduisez-en $U_{\mu}\mathrm{d}U^{\mu}/\mathrm{d}\tau$.

Le quadrivecteur vitesse $\widetilde{\mathbf{U}}:U^{\mu}$ d'un mobile de vitesse instantanée \mathbf{u} dans un référentiel inertiel \mathcal{R} s'écrit :

$$\widetilde{\mathbf{U}} = \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}\tau} \quad U^{\mu} = \left(\gamma(u)c, \gamma(u)\mathbf{u}\right) \quad \text{avec} \quad \mathbf{u} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}.$$

Sa pseudo-norme carrée vaut :

$$\widetilde{\mathbf{U}}^2 = U_{\mu}U^{\mu} = \eta_{\mu\nu}U^{\mu}U^{\nu} = \gamma(u)^2c^2 - \gamma(u)^2u^2 = \gamma(u)^2c^2\left(1 - \frac{u^2}{c^2}\right) = c^2.$$

Par conséquent, $\widetilde{\mathbf{U}}^2 = U_\mu U^\mu = c^2$ est non seulement un invariant de Lorentz, mais aussi une constante. On en déduit que sa dérivée par rapport au temps propre du mobile est nulle :

$$\frac{\mathrm{d}\widetilde{\mathbf{U}}^2}{\mathrm{d}\tau} = 2\widetilde{\mathbf{U}} \cdot \frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau} = 0 \qquad i.e. \quad \frac{\mathrm{d}(U_\mu U^\mu)}{\mathrm{d}\tau} = 2U_\mu \frac{\mathrm{d}U^\mu}{\mathrm{d}\tau} = 0$$

Et par conséquent,

$$U_{\mu} \frac{\mathrm{d}U^{\mu}}{\mathrm{d}\tau} = 0$$
 i.e. $U_{\mu}A^{\mu} = 0$ $\widetilde{\mathbf{U}} \cdot \widetilde{\mathbf{A}} = 0$

où $\widetilde{\mathbf{A}}:A^{\mu}$ est la quadri-accélération.

Autrement dit, les quadrivecteurs vitesse et accélération sont toujours orthogonaux au sens des quadrivecteurs.

5.2 — Montrez que le produit $\tilde{\mathbf{f}} \cdot \tilde{\mathbf{U}}$ est nul. Déduisez-en une expression pour la variation de l'énergie E de la particule en fonction du temps $\dot{E} = \mathrm{d}E/\mathrm{d}t$. Quel résultat retrouve-t-on?

Pour un mobile de masse propre m constante, on peut écrire la quadri-force comme :

$$\widetilde{\mathbf{f}} = \frac{\mathrm{d}\widetilde{\mathbf{p}}}{\mathrm{d}\tau} = m \frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau}$$
 i.e. $f^{\mu} = m \frac{\mathrm{d}U^{\mu}}{\mathrm{d}\tau}$

D'après ce qui précède, on en déduit immédiatement que le pseudo-produit scalaire $\widetilde{\mathbf{f}}\cdot\widetilde{\mathbf{U}}$ est nul :

$$\widetilde{\mathbf{f}} \cdot \widetilde{\mathbf{U}} = m \frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau} \cdot \widetilde{\mathbf{U}} = m \frac{\mathrm{d}U^{\mu}}{\mathrm{d}\tau} U_{\mu} = 0.$$

D'autre part, les composantes contravariantes de la quadri-force $\tilde{\mathbf{f}}$ peuvent s'écrire :

$$\widetilde{\mathbf{f}}: f^{\mu} = \frac{\mathrm{d}p^{\mu}}{\mathrm{d}\tau} = \left(\frac{1}{c}\frac{\mathrm{d}E}{\mathrm{d}\tau}, \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\tau}\right) = \left(\frac{1}{c}\frac{\mathrm{d}t}{\mathrm{d}\tau}\frac{\mathrm{d}E}{\mathrm{d}t}, \frac{\mathrm{d}t}{\mathrm{d}\tau}\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}\right) = \left(\frac{1}{c}\gamma(u)\frac{\mathrm{d}E}{\mathrm{d}t}, \gamma(u)\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}\right)$$

Comme $\widetilde{\mathbf{f}} \cdot \widetilde{\mathbf{U}} = f^{\mu}U_{\mu} = 0$, on en déduit :

$$\widetilde{\mathbf{f}} \cdot \widetilde{\mathbf{U}} = f^{\mu} U_{\mu} = \gamma(u)^2 \frac{\mathrm{d}E}{\mathrm{d}t} - \gamma(u)^2 \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \cdot \mathbf{u} = 0$$

Soit:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \cdot \mathbf{u}.$$

En notant que $d\mathbf{p}/dt$ a la dimension d'une force, on retrouve ici un résultat analogue (d'un point de vue formel) à la mécanique classique : la variation de l'énergie d'un mobile par unité de temps est égale à la puissance des forces appliquées sur cette particule.

6. Tenseurs, composantes covariantes et contravariantes

 $\mathbf{6.1}$ — Soient un quadrivecteur $\widetilde{\mathbf{V}}$ et un quadritenseur $\widetilde{\mathbf{T}}$ de composantes :

$$T^{\mu\nu} = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix} \qquad V^{\mu} = (-1, 2, 0, -2)$$

Ecrivez les composantes de

$$T_{\mu\nu}$$
 $T^{\mu}_{\ \nu}$ $T_{\mu}^{\ \nu}$ $T_{\lambda}^{\ \nu}$ $V_{\mu}V^{\mu}$ $V_{\mu}T^{\mu\nu}$

En pratique, on fait "monter" un indice en contractant avec la métrique $\eta^{\mu\nu}$, et on "abaisse" un indice en contractant avec la métrique $\eta_{\mu\nu}$. Dans l'espace-temps plat de Minkowski, on a :

$$\eta_{\mu\nu} = \mathbf{e}_{\mu} \cdot \mathbf{e}_{\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad \eta^{\mu\nu} = \mathbf{e}^{\mu} \cdot \mathbf{e}^{\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

On obtient ainsi les composantes une fois contravariantes une fois covariante du tenseur $\widetilde{\mathbf{T}}$:

$$T^{\mu}_{\ \nu} = \eta_{\nu\alpha} T^{\mu\alpha} = T^{\mu\alpha} \eta_{\nu\alpha} = T^{\mu\alpha} \eta_{\alpha\nu}$$

car le tenseur métrique $\eta_{\nu\alpha}$ est symétrique. On reconnaît dans la dernière expression un produit matriciel, ce qui donne :

$$T^{\mu}_{\ \nu} = T^{\mu\alpha}\eta_{\alpha\nu} = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 & 1 \\ -1 & 0 & -3 & 2 \\ -1 & -1 & 0 & 0 \\ -2 & -1 & -1 & 2 \end{pmatrix}$$

On procède de même pour obtenir les composantes une fois covariantes une fois contravariantes $T_{\mu}{}^{\nu}$:

$$T_{\mu}^{\ \nu} = \eta_{\mu\alpha} T^{\alpha\nu}$$

où on reconnaît un produit matriciel,

$$T_{\mu}{}^{\nu} = \eta_{\mu\alpha} T^{\alpha\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 & -1 \\ 1 & 0 & -3 & -2 \\ 1 & -1 & 0 & 0 \\ 2 & -1 & -1 & 2 \end{pmatrix}$$

Pour abaisser les deux indices de $T^{\mu\nu}$ et obtenir les composantes deux fois covariantes de T, on contracte deux fois avec la métrique $\eta_{\mu\nu}$:

$$T_{\mu\nu} = \eta_{\mu\alpha}\eta_{\nu\beta}T^{\alpha\beta}$$

En réordonnant les termes (somme de produits de nombres), et en utilisant la symétrie du tenseur métrique, on peut mettre cette expression sous la forme d'un produit matriciel :

$$T_{\mu\nu} = \eta_{\mu\alpha}\eta_{\nu\beta}T^{\alpha\beta} = \eta_{\mu\alpha}T^{\alpha\beta}\eta_{\nu\beta} = \eta_{\mu\alpha}T^{\alpha\beta}\eta_{\beta\nu}$$

Ce qui donne:

$$T_{\mu\nu} = \eta_{\mu\alpha} T^{\alpha\beta} \eta_{\beta\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 & 1 \\ 1 & 0 & 3 & 2 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & -2 \end{pmatrix}$$

On pouvait aussi obtenir ce résultat à partir de $T^{\mu}_{\ \nu}$ par exemple,

$$T_{\mu\nu} = \eta_{\mu\alpha} T^{\alpha}_{\ \nu}$$
.

On peut calculer la contraction T_{λ}^{λ} en énumérant simplement les termes de la somme :

$$T_{\lambda}^{\ \lambda} = T_0^{\ 0} + T_1^{\ 1} + T_2^{\ 2} + T_3^{\ 3} = 2 + 0 + 0 + 2 = 4$$

On aura bien sûr $T_{\lambda}^{\ \lambda}=T_{\ \lambda}^{\lambda}$. Il s'agit de la *trace* du tenseur $T_{\mu}^{\ \nu}$, qui est aussi un invariant de Lorentz. Enfin, pour le quadrivecteur de composantes contravariantes V^{μ} , on obtient les composantes covariantes en contractant avec la métrique $\eta_{\mu\nu}$,

$$V_{\mu} = \eta_{\mu\alpha}V^{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 0 \\ 2 \end{pmatrix}$$

La pseudo-norme carrée de $\widetilde{\mathbf{V}}$ s'obtient par :

$$V_{\mu}V^{\mu} = V_{0}V^{0} + V_{1}V^{1} + V_{2}V^{2} + V_{3}V^{3} = (-1) \times (-1) + -2 \times 2 + 0 \times 0 + 2 \times (-2) = -7$$

Enfin, la contraction de V_{μ} avec $T^{\mu\nu}$ s'écrit :

$$V_{\mu}T^{\mu\nu} = (-1, -2, 0, 2) \cdot \begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix} = (-4, 2, -5, -7).$$

On pouvait aussi obtenir ce résultat en remarquant que $V_{\mu}T^{\mu\nu} = V^{\mu}T_{\mu}^{\ \nu}$.

6.2 — Écrivez les composantes contravariantes p^{μ} du quadrivecteur énergie-impulsion $\tilde{\mathbf{p}}$ d'une particule. Comment obtient-on les composantes covariantes p_{μ} ? Ecrivez ces composantes explicitement.

On construit le quadrivecteur énergie-impulsion (ou quadri-impulsion) $\widetilde{\mathbf{p}}$ comme suit, par analogie avec la mécanique classique :

$$\widetilde{\mathbf{p}} = m \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}\tau} = m\widetilde{\mathbf{U}}$$

Ses composantes contravariantes s'écrivent :

$$p^{\mu} = \begin{pmatrix} \gamma(u)mc \\ \gamma(u)m\mathbf{u} \end{pmatrix} = \begin{pmatrix} E/c = \gamma(u)mc \\ \mathbf{p} = \gamma(u)m\mathbf{u} \end{pmatrix} \quad \text{avec } E \text{ l'énergie totale de l'objet étudié.}$$

De même, ses composantes covariantes s'écrivent :

$$p_{\mu} = \eta_{\mu\nu}p^{\nu} = \begin{pmatrix} \gamma(u)mc \\ -\gamma(u)m\mathbf{u} \end{pmatrix} = \begin{pmatrix} E/c = \gamma(u)mc \\ -\mathbf{p} = -\gamma(u)m\mathbf{u} \end{pmatrix}$$

Dans ces relations, m est la masse propre de l'objet (c'est à dire sa masse au repos), $\gamma(u)m > m$ est en quelque sorte sa "masse apparente", et $E = \gamma(u)mc^2$ son énergie totale, somme de son énergie de masse $E_0 = mc^2$ et de son énergie cinétique $T = E - mc^2 = (\gamma(u) - 1)mc^2$.

La pseudo-norme carrée de $\tilde{\mathbf{p}}$ vaut $\tilde{\mathbf{p}}^2 = m^2c^2 = (mc^2)^2/c^2$.

Les composantes de $\widetilde{\mathbf{p}}$ vérifient les relations suivantes, très utiles :

$$\widetilde{\mathbf{p}}^2 = (mc^2)^2/c^2 = \left(\frac{E}{c}\right)^2 - \mathbf{p}^2 \quad \text{i.e.} \quad E^2 = p^2c^2 + m^2c^4$$

$$\vec{\beta} = \frac{\mathbf{p}}{p^0} = \frac{\mathbf{p}c}{E} \quad \text{et} \quad \gamma = \frac{E}{mc^2}$$

6.3 — On peut écrire l'opérateur gradient sous forme tensorielle :

$$\widetilde{\nabla}:\partial_{\mu}=rac{\partial}{\partial r^{\mu}}$$

Explicitez ∂_{μ} et ∂^{μ} .

Les composantes naturelles du quadri-gradient sont covariantes :

$$\widetilde{\nabla}: \partial_{\mu} = \frac{\partial}{\partial r^{\mu}} = \frac{\partial}{\partial x^{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}\frac{\partial}{\partial z}\right) = \left(\frac{1}{c}\frac{\partial}{\partial t}, \boldsymbol{\nabla}\right)$$

où on reconnaît la composante spatiale de $\widetilde{\nabla}$ comme étant l'opérateur gradient habituel.

Les composantes contravariantes de $\widetilde{\nabla}$ sont les dérivées partielles par rapports aux coordonnées covariantes x_μ d'espace-temps :

$$\widetilde{\nabla}: \partial^{\mu} = \frac{\partial}{\partial r_{\mu}} = \frac{\partial}{\partial x_{\mu}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\frac{\partial}{\partial x}, -\frac{\partial}{\partial y} - \frac{\partial}{\partial z}\right) = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\boldsymbol{\nabla}\right).$$

6.4 — Explicitez la contraction $\partial_{\mu}\partial^{\mu}$. Que reconnaissez-vous?

De manière immédiate,

$$\widetilde{\nabla}^2 = \partial_{\mu}\partial^{\mu} = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial y^2} = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \boldsymbol{\nabla}\cdot\boldsymbol{\nabla} = \frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \boldsymbol{\Delta} = \mathbf{0}$$

On reconnaît l'expression du D'Alembertien, qui est donc un opérateur naturellement covariant.

4ème Partie

Dynamique relativiste — Quadrivecteur énergie-impulsion (ou quadri-impulsion) — Défaut de masse — Collisions élastiques et inélastiques de particules — Effet Compton — Energie seuil — Boson de Higgs.

1. Energie et impulsion

1.1 — Rappelez la définition de la quadri-impulsion d'une particule de masse m, de temps propre τ , de ligne d'univers $\tilde{\mathbf{x}}(\tau)$.

1.2 — En déduire les expressions de l'énergie et de l'impulsion de la particule de masse m, de vitesse

1.3 — En déduire les diverses identités remarquables satisfaites par la quadri-impulsion, l'énergie, l'impulsion et la vitesse ${\bf u}$ de la particule de masse m.

On construit le quadrivecteur énergie-impulsion (ou quadri-impulsion) $\widetilde{\mathbf{p}}$ comme suit, par analogie avec la mécanique classique :

$$\widetilde{\mathbf{p}} = m \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}\tau} = m\widetilde{\mathbf{U}}$$

Ses composantes contravariantes s'écrivent :

$$p^{\mu} = \begin{pmatrix} \gamma(u)mc \\ \gamma(u)m\mathbf{u} \end{pmatrix} = \begin{pmatrix} E/c = \gamma(u)mc \\ \mathbf{p} = \gamma(u)m\mathbf{u} \end{pmatrix} \quad \text{avec E l'énergie totale de l'objet étudié.}$$

De même, ses composantes covariantes s'écrivent :

$$p_{\mu} = \eta_{\mu\nu}p^{\nu} = \begin{pmatrix} \gamma(u)mc \\ -\gamma(u)m\mathbf{u} \end{pmatrix} = \begin{pmatrix} E/c = \gamma(u)mc \\ -\mathbf{p} = -\gamma(u)m\mathbf{u} \end{pmatrix}$$

Dans ces relations, m est la masse propre de l'objet (c'est à dire sa masse au repos), $\gamma(u)m > m$ est en quelque sorte sa "masse apparente", et $E = \gamma(u)mc^2$ son énergie totale, somme de son énergie de masse $E_0 = mc^2$ et de son énergie cinétique $T = E - mc^2 = (\gamma(u) - 1)mc^2$.

La pseudo-norme carrée de $\tilde{\mathbf{p}}$ vaut $\tilde{\mathbf{p}}^2 = m^2c^2 = (mc^2)^2/c^2$.

Les composantes de $\tilde{\mathbf{p}}$ vérifient les relations suivantes, très utiles :

$$\widetilde{\mathbf{p}}^2 = (mc^2)^2/c^2 = \left(\frac{E}{c}\right)^2 - \mathbf{p}^2 \quad \text{i.e.} \quad E^2 = p^2c^2 + m^2c^4$$

$$\vec{\beta} = \frac{\mathbf{p}}{p^0} = \frac{\mathbf{p}c}{E} \quad \text{et} \quad \gamma = \frac{E}{mc^2}$$

1.4 — On considère la diffusion élastique proton-proton vue du laboratoire : proton cible immobile, énergie cinétique du proton incident 437 MeV, masse du proton 938 MeV. On s'intéresse au cas où les deux protons de l'état final ont la même énergie. Considérant la conservation de la quadri-impulsion totale, et donc de son carré, calculez l'angle formé par les directions de propagation des protons de l'état final. Et dans le cas d'un proton incident de 1 TeV (produit par le TEVATRON du Fermilab)?

Si on note $\widetilde{\mathbf{p}}_1$ et $\widetilde{\mathbf{p}}_2$ les quadrivecteurs énergie-impulsion respectifs du proton incident et du proton cible, et $\widetilde{\mathbf{p}}_1'$ et $\widetilde{\mathbf{p}}_2'$ les quadrivecteurs énergie-impulsion des deux protons (indiscernables) après la collision, on a, par conservation :

$$\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{p}}_1' + \widetilde{\mathbf{p}}_2' \tag{20}$$

En élevant au carré l'équation (20), on trouve :

$$\tilde{\mathbf{p}}_{1}^{2} + \tilde{\mathbf{p}}_{2}^{2} + 2\tilde{\mathbf{p}}_{1} \cdot \tilde{\mathbf{p}}_{2} = \tilde{\mathbf{p}}_{1}'^{2} + \tilde{\mathbf{p}}_{2}'^{2} + 2\tilde{\mathbf{p}}_{1}' \cdot \tilde{\mathbf{p}}_{2}'$$
 avec $\tilde{\mathbf{p}}_{1}^{2} = \tilde{\mathbf{p}}_{2}^{2} = \tilde{\mathbf{p}}_{1}'^{2} = \tilde{\mathbf{p}}_{2}'^{2} = m^{2}c^{2}$

D'où on déduit :

$$\widetilde{\mathbf{p}}_1 \cdot \widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{p}}_1' \cdot \widetilde{\mathbf{p}}_2' \tag{21}$$

Or, dans le référentiel du laboratoire, on a :

$$\widetilde{\mathbf{p}}_1:p_1^{\mu}=\begin{pmatrix}E/c\\\mathbf{p}\end{pmatrix}\quad \widetilde{\mathbf{p}}_2:p_2^{\mu}=\begin{pmatrix}mc\\\mathbf{0}\end{pmatrix}\quad \widetilde{\mathbf{p}}_1':p_1'^{\mu}=\begin{pmatrix}E_1'/c\\\mathbf{p}_1'\end{pmatrix}\quad \widetilde{\mathbf{p}}_2':p_2'^{\mu}=\begin{pmatrix}E_2'/c\\\mathbf{p}_2'\end{pmatrix}$$

En substituant, on trouve (en utilisant la relation $E'^2 - m^2 c^4 = p'^2 c^2$):

$$Em = \frac{E_1' E_2'}{c^2} - \mathbf{p}_1' \cdot \mathbf{p}_2' = \frac{E_1' E_2'}{c^2} - \frac{1}{c^2} \sqrt{E_1'^2 - m^2 c^4} \sqrt{E_2'^2 - m^2 c^4} \cos \theta$$

Ce qui donne l'angle θ entre les impulsions des deux protons après la collision :

$$\cos \theta = \frac{E_1' E_2' - Emc^2}{\sqrt{E_1'^2 - m^2 c^4} \sqrt{E_2'^2 - m^2 c^4}}$$

Dans le cas particulier où $E_1'=E_2'$, on a aussi $p_1'=p_2'$ (en norme). L'expression de θ se simplifie alors :

$$\cos \theta = \frac{E_1'^2 - Emc^2}{E_1'^2 - m^2c^4}$$

De plus, en utilisant la conservation de l'énergie,

$$E + mc^2 = E'_1 + E'_2 = 2E'_1$$
 d'où $E'_1 = E'_2 = \frac{E + mc^2}{2} = \frac{T + 2mc^2}{2}$ (22)

en faisant apparaître l'énergie cinétique $T=E-mc^2$ de la particule incidente.

En substituant dans l'expression de θ , on trouve :

$$\cos\theta = \frac{E'^2 - Emc^2}{E_1'^2 - m^2c^4} = \frac{\left(\frac{E + mc^2}{2}\right)^2 - Emc^2}{\left(\frac{E + mc^2}{2}\right)^2 - m^2c^4} = \frac{T^2}{T^2 + 4mc^2T} = \frac{1}{1 + \frac{4mc^2}{T}} < 1.$$

Ce qui montre que dans le cas relativiste, l'angle θ est inférieur à $\pi/2$.

Numériquement, pour une collision élastique de protons sur cible fixe avec $T=437\,\mathrm{MeV}$, on obtient :

$$\cos\theta = \frac{1}{1 + \frac{4mc^2}{T}} \simeq 0.104$$
 i.e. $\theta \simeq 84.01^{\circ}$.

Et pour un proton incident d'énergie cinétique T = 1 TeV,

$$\cos \theta = \frac{1}{1 + \frac{4mc^2}{T}} \simeq 0.996$$
 i.e. $\theta \simeq 4.96^{\circ}$.

1.5 — On considère la collision inélastique, $m+m \to m'$, d'une particule de masse m, de vitesse 4/5c, sur une particule de masse m, immobile. Calculez la masse m' de la particule finale, ainsi que sa vitesse.

Avant la collision, les quadri-impulsions $\tilde{\mathbf{p}}_1$ et $\tilde{\mathbf{p}}_2$ ont pour composantes :

$$\widetilde{\mathbf{p}}_1: p_1^{\mu} = \begin{pmatrix} \frac{E_1}{c} = \gamma(u_1)mc \\ \mathbf{p}_1 = \gamma(u_1)m\mathbf{u}_1 \end{pmatrix} \quad \text{et} \quad \widetilde{\mathbf{p}}_2: p_2^{\mu} = \begin{pmatrix} mc \\ \mathbf{p}_2 = \mathbf{0} \end{pmatrix}$$

où la particule 1 possède une vitesse $u_1 = 4c/5$, et par conséquent,

$$\gamma(u_1) = \frac{1}{\sqrt{1 - \frac{16}{25}}} = \frac{5}{3}$$

Après la collision, il n'y a plus qu'une seule particule de masse inconnue m', de quadri-impulsion $\widetilde{\mathbf{p}}_f$ avec :

$$\widetilde{\mathbf{p}}_f : p_f^{\mu} = \begin{pmatrix} \frac{E_f}{c} = \gamma(u_f)m'c\\ \mathbf{p}_f = \gamma(u_f)m'\mathbf{u}_f. \end{pmatrix}$$

La conservation de la quadri-impulsion implique :

$$\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{p}}_f$$

En élevant au carré (pseudo-norme carrée), on obtient :

$$\tilde{\mathbf{p}}_{1}^{2} + \tilde{\mathbf{p}}_{2}^{2} + 2\tilde{\mathbf{p}}_{1} \cdot \tilde{\mathbf{p}}_{2} = \tilde{\mathbf{p}}_{f}^{2}$$
 soit $2m^{2}c^{2} + 2\gamma(u_{1})m^{2}c^{2} = m'^{2}c^{2}$

On en déduit la masse m' de la particule obtenue :

$$m' = m\sqrt{2 + 2\gamma(u_1)} = \frac{4}{\sqrt{3}}m$$

Pour obtenir la vitesse de la particule après la collision, on peut utiliser la conservation de l'énergie (composante zéro de la quadri-impulsion) :

$$\gamma(u_1)mc^2 + mc^2 = \gamma(u_f)m'c^2$$
 i.e. $\gamma(u_f) = \frac{1 + \gamma(u_1)}{\sqrt{2 + 2\gamma(u_1)}} = \sqrt{\frac{1 + \gamma(u_1)}{2}} = \frac{2}{\sqrt{3}}$.

On en déduit la vitesse u_f de la particule produite après la collision,

$$u_f = c\sqrt{1 - \frac{1}{\gamma^2(u_f)}} = \frac{c}{2}.$$

2. Défaut de masse, énergie de liaison, bilan d'une réaction nucléaire

2.1 — **Défaut de masse du deutérium.** L'hydrogène possède un isotope dont le noyau comporte un proton et un neutron : le deutérium $_1^2$ H aussi noté $_1^2$ D. Estimez précisément sa masse à partir de ses constituants ($m_{\rm p}=1.007276\,{\rm u}$, $m_{\rm n}=1.008665\,{\rm u}$, $m_{\rm e}=511\,{\rm keV}/c^2$). La masse atomique du deutérium est en fait $2.014102\,{\rm u}$. Où est passée la différence ? Faites le calcul en unités atomiques et en MeV. Que représente cette différence d'énergie ?

Estimons la masse atomique du deutérium ²₁H à partir de ses constituants :

p	1.007276 u	$938.272\mathrm{MeV}/c^2$
n	1.008665 u	$939.565\mathrm{MeV}/c^2$
e	$0.000549\mathrm{u}$	$0.511\mathrm{MeV}/c^2$
total	2.016490 u	$1878.348{ m MeV}/c^2$
$_{1}^{2}\mathrm{H}$	$2.014102\mathrm{u}$	$1876.124\mathrm{MeV}/c^2$
défaut	-0.002388 u	$-2.224{ m MeV}/c^2$

Le défaut de masse constaté correspond à l'énergie de liaison du noyau (on néglige ici l'énergie de liaison de l'électron). C'est l'énergie qu'il faut fournir pour séparer les constituants du noyau. Par convention, l'énergie de liaison est l'opposé de la masse manquante :

$$B(^{2}_{1}\text{H}) = +2.224\,\text{MeV}$$

2.2 — Faites le même calcul pour l'hélium ${}_{2}^{4}$ He, le béryllium-8 ${}_{4}^{8}$ Be et l'uranium ${}_{92}^{238}$ U.

En procédant de même, on trouve un défault de masse de $-28.296\,\mathrm{MeV}/c^2$ pour l'hélium $^4_2\mathrm{He}$, de $-56.500\,\mathrm{MeV}/c^2$ pour le béryllium $^8_4\mathrm{Be}$, et de $-1801.70\,\mathrm{MeV}/c^2$ pour l'uranium $B(^{238}_{~92}\mathrm{U})$. Les énergies de liaison pour ces atomes sont donc :

$$B(^4_2{\rm He}) = +28.296\,{\rm MeV} \qquad B(^8_4{\rm Be}) = +56.500\,{\rm MeV} \qquad B(^{238}_{92}{\rm U}) = +1801.70\,{\rm MeV}$$

2.3 — Déduisez-en l'énergie de liaison par nucléon de chacun de ces noyaux.

Les énergies de liaison par nucléon (Il y a A nucléons) se déduisent immédiatement :

$$B(^2_1{\rm H})/A=B(^2_1{\rm H})/2=1.112\,{\rm MeV/nucl\acute{e}on}$$

$$B(^4_2{\rm He})/A=B(^4_2{\rm He})/4=7.074\,{\rm MeV/nucl\acute{e}on}$$

$$B(^8_4{\rm Be})/A=B(^8_4{\rm Be})/8=7.062\,{\rm MeV/nucl\acute{e}on}$$

$$B(^{238}_{92}{\rm U})/A=B(^{238}_{92}{\rm U})/238=7.570\,{\rm MeV/nucl\acute{e}on}.$$

2.4 — **Désintégration du Béryllium-8.** Le béryllium-8 est un isotope instable du Béryllium; sa demi-vie est très brève, $T_{1/2}(^8_4\text{Be}) \approx 8.2 \times 10^{-17}\,\text{s}$. Son noyau se désintègre spontanément en 2 noyaux d'hélium-4.

Écrivez le bilan de la réaction. En se plaçant dans le référentiel propre de l'atome de béryllium-8 avant désintégration, écrivez la conservation du quadrivecteur énergie-impulsion total. Déduisez-en l'énergie libérée, et l'énergie cinétique emportée par chacun des deux hélium-4 produits.

L'équation bilan de la réaction de désintégration du béryllium-8 s'écrit :

$${}^{8}_{4}\text{Be} \xrightarrow{\text{fission spontan\'ee}} {}^{4}_{2}\text{He} + {}^{4}_{2}\text{He}$$

Stricto sensu, il faudrait estimer la masse des noyaux à partir de celle des atomes (*masses atomiques*), en retirant la masse des cortèges électroniques et en tenant compte de l'énergie de liaison des électrons. En pratique, comme l'atome de béryllium-8 possède 4 électrons, et ses deux noyaux fils, les noyaux d'hélium-4, possèdent chacun 2 électrons, on ne fait pas une grande erreur en faisant le calcul du bilan de la réaction à partir des masses atomiques.

Si on note $\widetilde{\mathbf{p}}_{Be}$ le quadrivecteur énergie-impulsion du béryllium-8 avant sa désintégration, et $\widetilde{\mathbf{p}}_1$, $\widetilde{\mathbf{p}}_2$ les quadri-impulsions des deux hélium-4 produits, on a, par conservation de l'énergie et de la quantité de mouvement totale,

$$\widetilde{\mathbf{p}}_{Be} = \widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2.$$

Si on se place dans le référentiel propre du béryllium-8 avant désintégration, les composantes contravariantes de ces 3 quadrivecteurs s'écrivent :

$$\widetilde{\mathbf{p}}_{\mathrm{Be}}:p_{\mathrm{Be}}^{\mu}=egin{pmatrix} m_{\mathrm{Be}}c \\ \mathbf{0} \end{pmatrix} \qquad \widetilde{\mathbf{p}}_{1}:p_{1}^{\mu}=egin{pmatrix} E_{1}/c \\ \mathbf{p}_{1} \end{pmatrix} \qquad \widetilde{\mathbf{p}}_{2}:p_{2}^{\mu}=egin{pmatrix} E_{2}/c \\ \mathbf{p}_{2} \end{pmatrix}$$

La conservation de l'énergie totale et de la quantité de mouvement donnent ainsi :

$$m_{\text{Be}}c^2 = E_1 + E_2$$
$$\mathbf{0} = \mathbf{p}_1 + \mathbf{p}_2$$

On en déduit immédiatement que les deux héliums produits ont des quantités de mouvement égales et opposées : $\mathbf{p}_2 = -\mathbf{p}_1$; de plus, comme les deux héliums ont la même masse, on a aussi nécessairement

$$E_2 = E_1 = m_{\text{Be}}c^2/2.$$

Si on fait apparaître l'énergie cinétique et l'énergie au repos, on trouve :

$$E_1 = m_{\text{He}}c^2 + T_1 = m_{\text{Be}}c^2/2$$
 et $E_2 = m_{\text{He}}c^2 + T_2 = m_{\text{Be}}c^2/2$.

L'énergie cinétique emportée par chaque hélium vaut ainsi :

$$T_1 = T_2 = \frac{m_{\text{Be}}c^2 - 2m_{\text{He}}c^2}{2}$$

et l'énergie Q libérée (sous forme d'énergie cinétique) par la réaction s'écrit :

$$Q = T_1 + T_2 = m_{\rm Be}c^2 - 2m_{\rm He}c^2$$

Ce qui donne, numériquement,

$$Q \approx 91.84 \,\text{keV}$$
 $T_1 = T_2 = \frac{Q}{2} \approx 45.92 \,\text{keV}.$

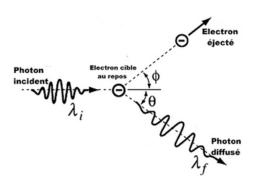
Données:

$$\begin{array}{lll} m_{\rm n} & = 1.008665\,{\rm u} & = 939.565\,{\rm MeV}/c^2 \\ m_{\rm p} & = 1.007276\,{\rm u} & = 938.272\,{\rm MeV}/c^2 \\ m_{\rm e} & = 0.000549\,{\rm u} & = 511\,{\rm keV}/c^2 \\ m(_1^2{\rm H}) & = 2.014102\,{\rm u} \\ m(_2^4{\rm He}) & = 4.0026033\,{\rm u} \\ m(_4^8{\rm Be}) & = 8.0053051\,{\rm u} \\ m(_{92}^{238}{\rm U}) & = 238.05078\,{\rm u} \\ 1\,{\rm u} & = 1.660538\times 10^{-27}\,{\rm kg} & = 931.494\,{\rm MeV}/c^2. \end{array}$$

3. L'effet Compton

En 1923, Arthur H. Compton (1892-1962) découvre que lorsqu'un photon diffuse sur un électron, la longueur d'onde du photon diffusé est modifiée, et que ce changement de longueur d'onde $\Delta\lambda$ dépend de l'angle de diffusion θ . Ce phénomène, inexplicable par l'électromagnétisme classique, ne peut être compris que dans le cadre relativiste; la découverte de l'effet Compton établit définitivement l'idée de dualité onde-corpuscule pour le photon.

3.1 — On considère la collision d'un photon d'énergie $h\nu_i$ avec un électron libre au repos (approximation raisonnable lorsque l'énergie du photon incident est grande devant l'énergie de liaison des électrons). Ecrivez la conservation de l'énergie et de la quantité de mouvement dans le référentiel du laboratoire.



3.2 — Déduisez-en le décalage de longueur d'onde $\Delta \lambda = \lambda_f - \lambda_i$ du photon diffusé en fonction de son angle de diffusion θ .

On appelle respectivement ν_i et ν_f les fréquences du photon incident et du photon diffusé, \mathbf{k}_i et \mathbf{k}_f leurs vecteurs d'onde. Dans le référentiel du laboratoire (où l'électron est initialement immobile), les quadrivecteurs impulsion $\tilde{\mathbf{p}}_i$ de l'électron et $\tilde{\mathbf{q}}_i$ du photon s'écrivent :

$$\widetilde{\mathbf{p_i}}: p_i^{\mu} = (m_e c, \mathbf{0})$$
 $\widetilde{\mathbf{q_i}}: q_i^{\mu} = \left(\frac{h\nu_i}{c}, \hbar \, \mathbf{k}_i\right)$

Après la diffusion, l'électron possède une énergie E_f et une impulsion \mathbf{p}_f . Les quadri-impulsions $\widetilde{\mathbf{p}}_f$ (électron) et $\widetilde{\mathbf{q}}_f$ (photon) s'écrivent alors :

$$\widetilde{\mathbf{p}}_f: p_f^{\mu} = \left(\frac{E_f}{c}, \mathbf{p_f}\right) \qquad \widetilde{\mathbf{q}}_f: q_f^{\mu} = \left(\frac{h\nu_f}{c}, \hbar \, \mathbf{k}_f\right)$$

La conservation de l'énergie et de l'impulsion s'exprime simplement par l'égalité :

$$\widetilde{\mathbf{p}}_i + \widetilde{\mathbf{q}}_i = \widetilde{\mathbf{p}}_f + \widetilde{\mathbf{q}}_f \tag{23}$$

L'équation précédente (23) permet de trouver le décalage en longueur d'onde de manière très élégante. On peut la réécrire en isolant le quadrivecteur associé à l'électron après l'interaction, puis élever au carré l'équation obtenue pour éliminer à la fois E' et p':

$$\widetilde{\mathbf{p}}_{f} = \widetilde{\mathbf{p}}_{i} + \widetilde{\mathbf{q}}_{i} - \widetilde{\mathbf{q}}_{f}
\widetilde{\mathbf{p}}_{f}^{2} = (\widetilde{\mathbf{p}}_{i} + \widetilde{\mathbf{q}}_{i} - \widetilde{\mathbf{q}}_{f})^{2} = \widetilde{\mathbf{p}}_{i}^{2} + \widetilde{\mathbf{q}}_{i}^{2} + \widetilde{\mathbf{q}}_{f}^{2} + 2 \widetilde{\mathbf{p}}_{i} \cdot \widetilde{\mathbf{q}}_{i} - 2 \widetilde{\mathbf{p}}_{i} \cdot \widetilde{\mathbf{q}}_{f} - 2 \widetilde{\mathbf{q}}_{i} \cdot \widetilde{\mathbf{q}}_{f}$$

En utilisant le fait que $\widetilde{\mathbf{p}}_i^2 = \widetilde{\mathbf{p}}_f^2 = m_e^2 c^2$, et que par ailleurs, pour le photon, $\widetilde{\mathbf{q}}_i^2 = \widetilde{\mathbf{q}}_f^2 = 0$, on obtient :

$$m_e h(\nu_i - \nu_f) = \frac{h^2 \nu_i \nu_f}{c^2} - \hbar^2 \, \mathbf{k}_i \cdot \mathbf{k}_f$$

Par ailleurs, pour un photon, $|\mathbf{k}|=2\pi/\lambda=2\pi\nu/c$, ce qui donne :

$$m_e(\nu_i - \nu_f) = \frac{h}{c^2} \nu_i \nu_f \left(1 - \cos \theta\right)$$

Où θ est l'angle entre les directions du photon incident et du photon diffusé. En divisant par $\nu_i\nu_f$ et en faisant apparaître les longueurs d'o nde λ_i et λ_f , on obtient :

$$\frac{c}{\nu_f} - \frac{c}{\nu_i} = \frac{h}{m_e c} \left(1 - \cos \theta \right)$$

$$\Delta \lambda = \lambda_f - \lambda_i = \frac{h}{m_e c} (1 - \cos \theta)$$

3.3 — Expérimentalement (A. H. Compton, *Phys. Rev.*, 21 (1923), 483.), A. H. Compton trouve qu'à 90° la longueur d'onde de la raie $K\alpha$ ($\lambda_i=0.0708\,\mathrm{nm}$) du molybdène est mesurée à $\lambda_f=0.0730\,\mathrm{nm}$. Déduisez-en une estimation de la masse de l'électron.

En utilisant le résultat précédent, on établit :

$$m_e = \frac{h}{c(\lambda_f - \lambda_i)} (1 - \cos \theta)$$

Ce qui donne ici, pour $\Delta \lambda = 0.0022\,\mathrm{nm}$ et $\theta = \pi/2$,

$$m_e \approx 1.0 \times 10^{-30} \,\mathrm{kg} \approx 564 \,\mathrm{keV}/c^2$$

Ce qui n'est pas très loin de la mesure actuelle de $m_e = 511 \text{ keV}/c^2$.

3.4 — Le processus inverse de l'effet Compton, baptisé diffusion Compton inverse, se produit lorsque des électrons très énergétiques sont freinés par les photons du milieu. Ce phénomène est observé en astrophysique, par exemple lorsque les photons du rayonnement fossile micro-onde interagissent avec les électrons très énergétiques du gaz chaud d'un amas de galaxies (effet Sunyaev-Zel'dovich).

Montrez que dans ce cas, le photon diffusé gagne de l'énergie aux dépens de l'électron (astuce : reprendre le calcul précédent en se plaçant dans le référentiel de l'électron après la collision).

D'un point de vue formel, le processus est en fait exactement le même que pour l'effet Compton, il ne s'agit que d'un changement de référentiel. La conservation du quadrivecteur énergie-impulsion s'écrit comme précédemment :

$$\widetilde{\mathbf{p}}_i + \widetilde{\mathbf{q}}_i = \widetilde{\mathbf{p}}_f + \widetilde{\mathbf{q}}_f \tag{24}$$

Qu'on peut réécrire afin d'éliminer E_i et \mathbf{p}_i :

$$\widetilde{\mathbf{p}}_{i} = \widetilde{\mathbf{p}}_{f} - \widetilde{\mathbf{q}}_{i} + \widetilde{\mathbf{q}}_{f}
\widetilde{\mathbf{p}}_{i}^{2} = (\widetilde{\mathbf{p}}_{f} - \widetilde{\mathbf{q}}_{i} + \widetilde{\mathbf{q}}_{f})^{2} = \widetilde{\mathbf{p}}_{f}^{2} + \widetilde{\mathbf{q}}_{i}^{2} + \widetilde{\mathbf{q}}_{f}^{2} - 2 \widetilde{\mathbf{p}}_{f} \cdot \widetilde{\mathbf{q}}_{i} + 2 \widetilde{\mathbf{p}}_{f} \cdot \widetilde{\mathbf{q}}_{f} - 2 \widetilde{\mathbf{q}}_{i} \cdot \widetilde{\mathbf{q}}_{f}$$

En se plaçant dans le référentiel de l'électron **après** la collision, on a cette fois, dans ce référentiel, avant la collision :

 $\widetilde{\mathbf{p}}_i : p_i^{\mu} = \left(\frac{E_i}{c}, \mathbf{p}_i\right) \qquad \widetilde{\mathbf{q}}_i : q_i^{\mu} \left(\frac{h\nu_i}{c}, \hbar \, \mathbf{k}_i\right)$

Après la diffusion, l'électron possède une énergie $m_e c^2$ et une impulsion nulle. Les quadri-impulsions $\tilde{\mathbf{p}}_f$ (électron) et $\tilde{\mathbf{q}}_f$ (photon) s'écrivent alors :

$$\widetilde{\mathbf{p}}_f: p_f^{\mu} = (m_e c, \mathbf{0}) \qquad \widetilde{\mathbf{q}}_f: q_f^{\mu} = \left(\frac{h\nu_f}{c}, \hbar \, \mathbf{k}_f\right)$$

Le calcul est analogue, et on trouve cette fois :

$$m_e h(\nu_i - \nu_f) = -\frac{h^2 \nu_i \nu_f}{c^2} + \hbar^2 \mathbf{k}_i \cdot \mathbf{k}_f$$

$$m_e(\nu_i - \nu_f) = \frac{h}{c^2} \nu_i \nu_f (\cos \theta - 1)$$

$$\frac{c}{\nu_f} - \frac{c}{\nu_i} = \frac{h}{m_e c} (\cos \theta - 1)$$

$$\Delta \lambda = \lambda_f - \lambda_i = \frac{h}{m_e c} (\cos \theta - 1) < 0$$

Dans le référentiel de l'électron après la collision, la longueur d'onde du photon diffusé est inférieure à la longueur d'onde du photon incident : le photon a donc **gagné** de l'énergie aux dépens de l'électron.

3.5 — Montrez qu'un processus où le photon disparaîtrait par absorption par un électron libre est impossible, du fait des lois de conservation de l'énergie et de l'impulsion. Commentez pour l'effet photoélectrique.

Pour un processus d'absorption totale du photon, dans le référentiel de l'électron initialement au repos, on aurait :

$$\widetilde{\mathbf{p}}_i:(m_e c, \mathbf{0}) \qquad \widetilde{\mathbf{q}}_i:\left(\frac{h\nu}{c}, \hbar \mathbf{k}\right) \qquad \widetilde{\mathbf{p}}_f:\left(\frac{E}{c}, \mathbf{p}_f\right) \qquad \widetilde{\mathbf{p}}_i+\widetilde{\mathbf{q}}_i=\widetilde{\mathbf{p}}_f$$

En prenant le carré de cette dernière expression, on trouve :

$$\widetilde{\mathbf{p}}_i^2 + \widetilde{\mathbf{q}}_i^2 + 2 \ \widetilde{\mathbf{p}}_i \cdot \widetilde{\mathbf{q}}_i = \widetilde{\mathbf{p}}_f^2 \qquad \text{soit} \qquad m_e^2 c^2 + 2 \, m_e h \nu = m_e^2 c^2$$

Ce qui est impossible. L'absorption d'un photon par un électron libre est interdite par la conservation simultanée de l'énergie et de l'impulsion.

Dans le cas de l'effet photo-électrique, l'électron est lié à l'atome : un transfert d'impulsion a lieu vers l'atome lui-même, ce qui rend l'interaction compatible avec la conservation de l'énergie et de l'impulsion.

3.6 — Un photon peut aussi disparaître et se matérialiser sous la forme d'une paire électron-positron e^-e^+ . Quelle est l'énergie minimale qu'un photon doit posséder pour produire une paire e^-e^+ ?

Montrez que ce processus de production de paire ne peut pas se produire dans le vide (il ne se produit en fait qu'en présence d'un champ électromagnétique externe, par exemple dans la matière à proximité d'un noyau atomique).

Pour un tel processus de création d'une paire e^-e^+ , on aurait :

$$\widetilde{\mathbf{q}}_i = \widetilde{\mathbf{p}}_{f+} + \widetilde{\mathbf{p}}_{f-}$$

En prenant le carré de cette dernière expression, on trouve :

$$\widetilde{\mathbf{q}}_{i}^{2} = \widetilde{\mathbf{p}}_{f+}^{2} + \widetilde{\mathbf{p}}_{f-}^{2} + 2 \widetilde{\mathbf{p}}_{f+} \cdot \widetilde{\mathbf{p}}_{f-}$$
 soit $0 = 2 m_{e}^{2} c^{2} + 2 \widetilde{\mathbf{p}}_{f+} \cdot \widetilde{\mathbf{p}}_{f-}$

Si on se place dans le référentiel propre de la paire e^-e^+ après la réaction, on aura :

$$\tilde{\mathbf{p}}_{f+}: (E_{f+}/c, \mathbf{p}_{f+}) \qquad \tilde{\mathbf{p}}_{f-}: (E_{f-}/c, \mathbf{p}_{f-})$$

Avec $\mathbf{p}_{f+} + \mathbf{p}_{f-} = \mathbf{0}$ dans le référentiel propre. Par conséquent, dans ce référentiel, $\mathbf{p}_{f+} = -\mathbf{p}_{f-}$, et comme électron et positron ont même masse m_e , on aura aussi $E_{f+} = E_{f-}$. On en déduit :

$$\widetilde{\mathbf{p}}_{f+} \cdot \widetilde{\mathbf{p}}_{f-} = \frac{E_{f+}E_{f-}}{c^2} - \mathbf{p}_{f+} \cdot \mathbf{p}_{f-} = \frac{E_{f+}^2}{c^2} + \mathbf{p}_{f+}^2 = \frac{E_{f+}^2}{c^2} + p_{f+}^2 > 0$$

Et l'expression précédente devient alors :

$$0 = 2 m_e^2 c^2 + \frac{E_{f+}^2}{c^2} + p_{f+}^2 \quad \text{soit} \quad \frac{E_{f+}^2}{c^2} + p_{f+}^2 = -2 m_e^2 c^2 < 0$$

Ce qui est impossible. On pouvait d'ailleurs s'en douter, en remarquant que le référentiel propre de la paire e^-e^+ est aussi le référentiel propre du photon avant collision : or, on ne peut pas définir de référentiel propre pour un photon (ce serait le référentiel où le photon est au repos, ce qui n'existe pas).

La matérialisation d'un photon sous forme d'une paire e^-e^+ n'est en fait possible que dans un champ électromagnétique externe, par exemple dans la matière, à proximité d'un noyau (qui récupère une partie de l'impulsion).

3.7 — Montrez, de même, que l'annihilation d'une paire $e^+\,e^-$ ne peut pas s'effectuer en produisant un photon unique, mais au minimum deux photons (la désintégration d'une paire $e^+\,e^-$ s'effectue en fait en produisant soit deux photons, soit trois photons).

Il s'agit du processus symétrique obtenu en remontant le temps. La conservation du quadrivecteur énergie-impulsion conduit exactement à la même équation :

$$\widetilde{\mathbf{p}}_{+} + \widetilde{\mathbf{p}}_{-} = \widetilde{\mathbf{q}}_{f}.$$

Par un raisonnement analogue, ce processus est impossible si un seul photon est produit.

4. Désintégration du pion

On considère le processus de désintégration d'un pion au repos :

$$\pi^+ \longrightarrow \mu^+ + \nu_\mu$$

4.1 — La masse du neutrino (ici muonique) n'étant toujours pas connue, on attribue à celui-ci une masse m_{ν} , et l'on souhaite calculer l'énergie E_{μ} du muon émis. La procédure standard consiste, sur

la base du principe de conservation de la quadri-impulsion totale, à exprimer la quadri-impulsion de la particule non-observée, le neutrino ici, en termes des quadri-impulsions des autres particules, et à élever au carré les deux membres de cette expression, éliminant ainsi l'énergie et l'impulsion du neutrino trop difficiles à mesurer.

Établissez ainsi l'expression de l'énergie du muon émis en fonction des masses des trois particules en jeu.

Les composantes contravariantes des quadri-impulsions dans le référentiel du laboratoire sont données par :

$$\widetilde{\mathbf{p}}_{\pi}: p_{\pi}^{\alpha} = (m_{\pi}c, \mathbf{0})$$
 $\widetilde{\mathbf{p}}_{\mu}: p_{\mu}^{\alpha} = (E_{\mu}/c, \mathbf{p}_{\mu})$ $\widetilde{\mathbf{p}}_{\nu}: p_{\nu}^{\alpha} = (E_{\nu}/c, \mathbf{p}_{\nu}).$

où α est ici l'indice (de 0 à 3).

On écrit la conservation de la quadri-impulsion :

$$\widetilde{\mathbf{p}}_{\pi} = \widetilde{\mathbf{p}}_{\mu} + \widetilde{\mathbf{p}}_{\nu}$$
 soit $\widetilde{\mathbf{p}}_{\pi} - \widetilde{\mathbf{p}}_{\mu} = \widetilde{\mathbf{p}}_{\nu}$

La quadri-impulsion du neutrino ainsi isolée, on élève au carré:

$$\widetilde{\mathbf{p}}_{\pi}^2 + \widetilde{\mathbf{p}}_{\mu}^2 - 2 \ \widetilde{\mathbf{p}}_{\pi} \cdot \widetilde{\mathbf{p}}_{\mu} = \widetilde{\mathbf{p}}_{\nu}^2 \qquad \text{soit} \qquad m_{\pi}^2 c^2 + m_{\mu}^2 c^2 - 2m_{\pi} E_{\mu} = m_{\nu}^2 c^2.$$

D'où le résultat :

$$E_{\mu} = \frac{m_{\pi}^2 c^2 + m_{\mu}^2 c^2 - m_{\nu}^2 c^2}{2m_{\pi}} \simeq \frac{m_{\pi}^2 c^2 + m_{\mu}^2 c^2}{2m_{\pi}}.$$

4.2 — La masse du pion est $m_\pi=139.57\,{\rm MeV}/c^2$; celle du muon $m_\mu=105.66\,{\rm MeV}/c^2$. La masse du neutrino mu est inconnue; les expériences de mesure des oscillations de neutrinos ont montré que leur masse est non nulle; elle est cependant très faible (inférieure à l'électron-volt). On pourra donc ici négliger le terme en m_ν . Donnez la valeur numérique de l'énergie totale et de l'énergie cinétique du muon produit, dans le référentiel du pion au repos avant désintégration.

On obtient ainsi, pour l'énergie totale du muon produit par désintégration du pion (dans le référentiel du pion au repos avant désintégration),

$$E_{\mu} = \frac{m_{\pi}^2 c^2 + m_{\mu}^2 c^2 - m_{\nu}^2 c^2}{2m_{\pi}} \simeq \frac{m_{\pi}^2 c^2 + m_{\mu}^2 c^2}{2m_{\pi}} = \frac{(139.57\,\mathrm{MeV}/c^2)^2 c^2 + (105.66\,\mathrm{MeV}/c^2)^2 c^2}{2\times 139.57\,\mathrm{MeV}/c^2} \approx 109.78\,\mathrm{MeV}/c^2$$

On en déduit l'énergie cinétique du muon dans le référentiel du pion avant désintégration,

$$E_{\mu} = m_{\mu}c^2 + T_{\mu}$$
 $T_{\mu} = E_{\mu} - m_{\mu}c^2 \approx 109.78 \,\text{MeV} - 105.66 \,\text{MeV} = 4.12 \,\text{MeV}.$

5. Collisionneurs

On s'intéresse à la collision de deux particules identiques de masse m.

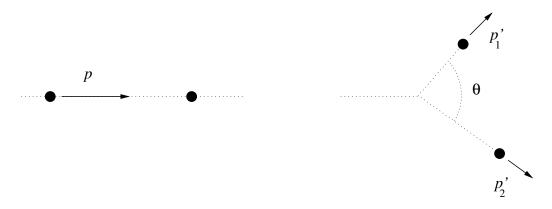


FIGURE 29 – Collision élastique sur cible fixe.

Collision élastique sur cible fixe : traitement classique

On s'intéresse à la collision élastique d'une particule de masse m, d'impulsion \mathbf{p} et d'énergie cinétique T sur une particule identique, immobile (la "cible", fig. 29).

5.1 — Dans le cadre de la mécanique classique, écrivez la conservation de l'énergie cinétique et de la quantité de mouvement (impulsion).

En mécanique classique, pour une collision élastique, il y a conservation de l'énergie cinétique totale :

$$T_1 + T_2 = T_1' + T_2'$$
 qu'on peut écrire $\frac{p_1^2}{2m} + \frac{p_2^2}{2m} = \frac{p_1'^2}{2m} + \frac{p_2'^2}{2m}$ (25)

Par ailleurs, il y a toujours conservation de la quantité de mouvement totale :

$$\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}_1 + \mathbf{p}_2 \tag{26}$$

5.2 — Montrez que l'angle θ entre les impulsions $\mathbf{p'}_1$ et $\mathbf{p'}_2$ des particules après la collision est nécessairement égal à $\pi/2$ dans le cadre classique.

Comme les deux particules ont la même masse m avant et après la collision, l'équation (25) peut s'écrire :

$$p_1^2 + p_2^2 = p_1'^2 + p_2'^2 (27)$$

Par ailleurs, en élevant au carré l'équation (26), on obtient :

$$p_1^2 + p_2^2 + 2\mathbf{p}_1 \cdot \mathbf{p}_2 = p_1'^2 + p_2'^2 + 2\mathbf{p}_1' \cdot \mathbf{p}_2'$$
(28)

En combinant ces deux équations et en utilisant le fait que, dans le cas qui nou s intéresse ici, $\mathbf{p}_1 = \mathbf{p}$ et $\mathbf{p}_2 = \mathbf{0}$, on trouve :

$$\mathbf{p}_1' \cdot \mathbf{p}_2' = 0$$
 i.e. $p_1' p_2' \cos \theta = 0$ ce qui implique $\cos \theta = 0$. (29)

L'angle θ entre les impulsions $\mathbf{p'}_1$ et $\mathbf{p'}_2$ des particules après la collision est nécessairement égal à $\pi/2$.

Collision élastique sur cible fixe : traitement relativiste

On traite maintenant le même phénomène dans le cadre de la dynamique relativiste.

5.3 — Écrivez la conservation du quadrivecteur énergie-impulsion total lors de la collision.

Si on note $\tilde{\mathbf{p}}_1$ et $\tilde{\mathbf{p}}_2$ les quadrivecteurs énergie-impulsion des particules incidentes, et $\tilde{\mathbf{p}}_1'$ et $\tilde{\mathbf{p}}_2'$ les quadrivecteurs énergie-impulsion des particules après la collision, on a, par conservation :

$$\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{p}}_1' + \widetilde{\mathbf{p}}_2' \tag{30}$$

5.4 — Exprimez l'angle θ entre $\mathbf{p'}_1$ et $\mathbf{p'}_2$ en fonction de E, m, E'_1 et E'_2 , où E'_1 et E'_2 sont les énergies des deux particules après la collision.

En élevant au carré l'équation (30), on trouve :

$$\widetilde{\mathbf{p}}_1^2 + \widetilde{\mathbf{p}}_2^2 + 2\widetilde{\mathbf{p}}_1 \cdot \widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{p}}_1'^2 + \widetilde{\mathbf{p}}_2'^2 + 2\widetilde{\mathbf{p}}_1' \cdot \widetilde{\mathbf{p}}_2' \qquad \text{avec} \quad \widetilde{\mathbf{p}}_1^2 = \widetilde{\mathbf{p}}_2'^2 = \widetilde{\mathbf{p}}_1'^2 = \widetilde{\mathbf{p}}_2'^2 = m^2c^2$$

D'où on déduit :

$$\widetilde{\mathbf{p}}_1 \cdot \widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{p}}_1' \cdot \widetilde{\mathbf{p}}_2' \tag{31}$$

Or, dans le référentiel du laboratoire, on a :

$$\widetilde{\mathbf{p}}_1:p_1^{\mu}=\begin{pmatrix}E/c\\\mathbf{p}\end{pmatrix}\quad\widetilde{\mathbf{p}}_2:p_2^{\mu}=\begin{pmatrix}mc\\\mathbf{0}\end{pmatrix}\quad\widetilde{\mathbf{p}}_1':p_1'^{\mu}=\begin{pmatrix}E_1'/c\\\mathbf{p}_1'\end{pmatrix}\quad\widetilde{\mathbf{p}}_2':p_2'^{\mu}=\begin{pmatrix}E_2'/c\\\mathbf{p}_2'\end{pmatrix}$$

En substituant, on trouve (en utilisant la relation $E'^2 - m^2 c^4 = p'^2 c^2$):

$$Em = \frac{E_1' E_2'}{c^2} - \mathbf{p}_1' \cdot \mathbf{p}_2' = \frac{E_1' E_2'}{c^2} - \frac{1}{c^2} \sqrt{E_1'^2 - m^2 c^4} \sqrt{E_2'^2 - m^2 c^4} \cos \theta$$

Ce qui donne θ :

$$\cos\theta = \frac{E_1' E_2' - Emc^2}{\sqrt{E_1'^2 - m^2 c^4} \sqrt{E_2'^2 - m^2 c^4}}$$

5.5 — Dans le cas particulier où $E_1' = E_2'$, exprimez θ en fonction de E et m; montrez que θ est nécessairement inférieur à $\pi/2$. Comparez avec le résultat en mécanique classique.

Dans le cas particulier où $E_1'=E_2'$, on a aussi $p_1'=p_2'$ (en norme). L'expression de θ se simplifie alors :

$$\cos \theta = \frac{E_1^{\prime 2} - Emc^2}{E_1^{\prime 2} - m^2c^4}$$

De plus, en utilisant la conservation de l'énergie,

$$E + mc^2 = E'_1 + E'_2 = 2E'_1$$
 d'où $E'_1 = E'_2 = \frac{E + mc^2}{2} = \frac{T + 2mc^2}{2}$ (32)

en faisant apparaître l'énergie cinétique $T=E-mc^2$ de la particule incidente.

En substituant dans l'expression de θ , on trouve :

$$\cos\theta = \frac{E'^2 - Emc^2}{E_1'^2 - m^2c^4} = \frac{\left(\frac{E + mc^2}{2}\right)^2 - Emc^2}{\left(\frac{E + mc^2}{2}\right)^2 - m^2c^4} = \frac{T^2}{T^2 + 4mc^2T} = \frac{1}{1 + \frac{4mc^2}{T}} < 1.$$

Ce qui montre que dans le cas relativiste, l'angle θ est inférieur à $\pi/2$.

5.6 — Écrivez la masse invariante du système constitué par les deux particules. Quelle est l'énergie totale E^* disponible dans le référentiel du centre de masse \mathcal{R}^* , en fonction de E et m?

Par définition, la masse invariante du système s'écrit :

$$\frac{(E^*)^2}{c^2} = \left[\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2\right]^2 = \left(\frac{E}{c} + mc\right)^2 - (\mathbf{p} + \mathbf{0})^2 = \frac{E^2}{c^2} + m^2c^2 + 2Em - \mathbf{p}^2 = 2m\left[E + mc^2\right] = 2m\left[T + 2mc^2\right]$$

L'énergie totale E^* disponible dans le référentiel \mathcal{R}^* du centre de masse est donc :

$$E^* = \sqrt{2mc^2 [E + mc^2]} = \sqrt{2mc^2 [T + 2mc^2]}$$

Collisionneur symétrique

On considère maintenant le cas d'un collisionneur symétrique : dans le référentiel du laboratoire, les deux particules possèdent la même énergie E et des impulsions opposées de même norme p (fig. 30).

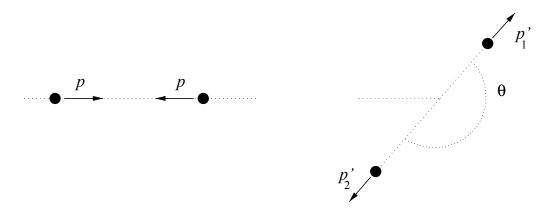


FIGURE 30 – Collision symétrique (collisionneur).

5.7 — Écrivez la conservation du quadrivecteur énergie-impulsion avant et après la collision, dans le référentiel du laboratoire.

Comme précédemment, on a :

$$\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{p}}_1' + \widetilde{\mathbf{p}}_2' \tag{33}$$

Avec, dans le référentiel du laboratoire :

$$\widetilde{\mathbf{p}}_1:p_1^{\mu}=\begin{pmatrix}E/c\\\mathbf{p}\end{pmatrix}\quad \widetilde{\mathbf{p}}_2:p_2^{\mu}=\begin{pmatrix}E/c\\-\mathbf{p}\end{pmatrix}\quad \widetilde{\mathbf{p}}_1':p_1'^{\mu}=\begin{pmatrix}E_1'/c\\\mathbf{p}_1'\end{pmatrix}\quad \widetilde{\mathbf{p}}_2':p_2'^{\mu}=\begin{pmatrix}E_2'/c\\\mathbf{p}_2'\end{pmatrix}$$

5.8 — Que pensez-vous du référentiel du centre de masse du système \mathbb{R}^* ?

De manière immédiate, on constate dans le référentiel \mathcal{R} du laboratoire que l'impulsion totale est nulle avant la collision. Elle sera donc aussi nulle après la collision, et le référentiel du laboratoire \mathcal{R} se confond avec celui du centre de masse du système \mathcal{R}^* .

5.9 — Écrivez la masse invariante du système constitué par les deux particules. Quelle est l'énergie totale E^* disponible dans le référentiel du centre de masse \mathcal{R}^* , en fonction de E et m?

Par définition, la masse invariante du système s'écrit :

$$\frac{(E^*)^2}{c^2} = [\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2]^2 = \left(\frac{E}{c} + \frac{E}{c}\right)^2 - (\mathbf{p} - \mathbf{p})^2 = \frac{4E^2}{c^2} = 4\frac{\left[T + mc^2\right]^2}{c^2}$$

L'énergie totale E^* disponible dans le référentiel \mathcal{R}^* du centre de masse est donc :

$$E^* = 2E = 2\left[T + mc^2\right]$$

Collision inélastique : production des anti-protons

En physique des particules on cherche à produire des collisions inélastiques : l'objectif est de concentrer pendant un bref instant une énergie considérable dans un petit volume afin de produire des particules inexistantes dans la matière ordinaire et pouvoir ainsi étudier leurs propriétés.

Considérons la réaction suivante, qui vise à produire des anti-protons \bar{p} en faisant collisionner des protons p:

$$p + p \longrightarrow p + p + \bar{p}$$

5.10 — En utilisant la notion de masse invariante, déterminer l'énergie cinétique minimale T_1 qu'il faut donner aux protons d'un faisceau qui frappe une cible d'hydrogène, pour produire effectivement des antiprotons (scénario "cible fixe"). Application numérique.

D'après les résultats obtenus précédemment, la masse invariante dans une collision sur cible fixe est :

$$\frac{(E^*)^2}{c^2} = 2m \left[E + mc^2 \right] = 2m \left[T + 2mc^2 \right]$$

L'énergie totale E^* disponible dans le référentiel \mathcal{R}^* du centre de masse est donc :

$$E^* = \sqrt{2mc^2 [E + mc^2]} = \sqrt{2mc^2 [T + 2mc^2]}$$

Pour pouvoir produire un proton et un antiproton supplémentaire, il faut que l'énergie disponible dans le référentiel du centre de masse soit au moins égale à 4 fois la masse d'un proton :

$$E^* > 4mc^2$$
 i.e. $2mc^2 [T + 2mc^2] > 16m^2c^4$ i.e. $T > 6mc^2$

Numériquement, il faut donc $T > 6 \times 938\,\mathrm{MeV} = 5.628\,\mathrm{GeV}.$

5.11 — En procédant de même, déterminer l'énergie cinétique minimale T_2 qu'il faut fournir aux protons de deux faisceaux opposés pour produire des antiprotons (scénario "collisionneur symétrique"). Application numérique.

Dans une collision symétrique, l'énergie totale E^* disponible dans le référentiel \mathcal{R}^* du centre de masse est :

$$E^* = 2E = 2\left[T + mc^2\right]$$

Comme précédemment, pour produire un proton et un antiproton, il faut $E^* > 4mc^2$, c'est à dire :

$$2E = 2[T + mc^2] > 4mc^2$$
 i.e. $T > mc^2$

Numériquement, il faut donc cette fois $T > 938 \,\text{MeV}$.

5.12 — Entre ces deux types d'expériences, quelle est la méthode qui semble la plus avantageuse? Commentez. Données : masse du proton et de l'anti-proton : $m_p = m_{\bar{p}} = 938 \,\mathrm{MeV}/c^2$.

D'après ce qui précède, il est évident qu'un collisionneur symétrique est très avantageux comparé à un dispositif de collision sur cible fixe, puisque pour obtenir la même énergie disponible dans le centre de masse de la collision, il faut fournir une énergie $T>6mc^2$ au faisceau dans le cas d'une cible fixe, contre $T>mc^2$ à chacun des faisceaux dans un collisionneur symétrique. D'où le succès des collisionneurs symétriques en physique des particules (LEP, LHC, etc).

FIGURE 31 – Edward McMillan et Edward Lofgren, responsables du projet, photographiés sur le blindage de l'accélérateur dit "Bevatron" (Lawrence Berkeley National Laboratory, USA). Exploité à partir de 1954, le Bevatron permit en 1955 la découverte de l'anti-proton en bombardant une cible fixe avec des protons d'énergie cinétique suffisante. Pour cette découverte, Emilio Gino Segrè et Owen Chamberlain se virent attribuer le prix Nobel de Physique en 1959.

6. La physique au Large Hadron Collider (LHC)

Afin de comprendre la structure élémentaire de la matière, les physiciens des particules ont développé des techniques d'accélération des particules chargées (électrons, protons, ions, etc) permettant de produire des collisions à très haute énergie. L'analyse détaillée de chaque collision permet de mieux comprendre la sous-structure des particules, leurs interactions, et de découvrir de nouvelles particules. C'est ainsi qu'ont été découverts un ensemble de particules élémentaires prédites par le *Modèle Standard*: les quarks charm (c), bottom (b) et top (t); les bosons W⁺, W⁻ et Z; et enfin le boson de Higgs en 2012.

Collision inélastique : production d'une paire $X\bar{X}$

En physique des particules on cherche à produire des collisions inélastiques : l'objectif est de concentrer pendant un bref instant une énergie considérable dans un petit volume afin de produire des particules inexistantes dans la matière ordinaire et pouvoir ainsi étudier leurs propriétés.

Considérons la réaction inélastique suivante, qui vise à produire une paire de particules quelconques X et \bar{X} (X et son anti-particule) de mêmes masses m_X en faisant collisionner des protons p (on suppose ici les protons intacts après la collision, ce qui n'est généralement pas le cas pour les collisions intéressantes au LHC) :

$$p + p \longrightarrow p + p + X + \bar{X}$$

6.1 — Écrivez la conservation du quadrivecteur énergie-impulsion pour cette réaction.

La conservation du quadrivecteur énergie-impulsion s'écrit (sans développer) :

$$\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{p}}_1' + \widetilde{\mathbf{p}}_2' + \widetilde{\mathbf{p}}_X + \widetilde{\mathbf{p}}_{\bar{X}}$$

6.2 — Exprimez la masse invariante du système, avant et après la réaction.

La masse invariante M^* du système s'écrit :

$$(M^*)^2 c^2 = (\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2)^2 = (\widetilde{\mathbf{p}}_1' + \widetilde{\mathbf{p}}_2' + \widetilde{\mathbf{p}}_X + \widetilde{\mathbf{p}}_{\bar{X}})^2$$

Si on développe l'expression avant la collision, on trouve, exprimée dans le référentiel du laboratoire (qui est aussi le référentiel propre ici) :

$$(M^*)^2 c^2 = (\widetilde{\mathbf{p}}_1 + \widetilde{\mathbf{p}}_2)^2 = \widetilde{\mathbf{p}}_1^2 + \widetilde{\mathbf{p}}_2^2 + 2\widetilde{\mathbf{p}}_1 \cdot \widetilde{\mathbf{p}}_2 = 2m^2 c^2 + 2\frac{E_1 E_2}{c^2} - 2\mathbf{p}_1 \cdot \mathbf{p}_2$$

Comme les deux protons ont la même énergie $E_1 = E_2 = E = mc^2 + T$, et des impulsions opposées $\mathbf{p}_2 = -\mathbf{p_1}$ et de même norme p,

$$(M^*)^2 c^2 = 2m^2 c^2 + 2\frac{E^2}{c^2} + 2p^2 = 4\frac{E^2}{c^2}$$

Ce qui donne la masse invariante M^* et l'énergie totale disponible E^* dans le centre de masse :

$$M^* = \frac{2E}{c^2}$$
 et $E^* = M^*c^2 = 2E = 2(T + mc^2)$.

6.3 — Déterminer l'énergie cinétique minimale T qu'il faut fournir aux protons de deux faisceaux opposés pour produire une particule X de masse m_X et son antiparticule \bar{X} de même masse (en supposant les protons intacts après la collision).

Dans une collision symétrique, l'énergie totale E^* disponible dans le référentiel \mathcal{R}^* du centre de masse est :

$$E^* = 2E = 2\left[T + mc^2\right]$$

Pour produire une particule X et son antiparticule \bar{X} en conservant les 2 protons, il faut $E^* > 2mc^2 + 2m_Xc^2$, c'est à dire :

$$2E = 2[T + mc^2] > 2mc^2 + m_X c^2$$
 i.e. $T > m_X c^2$.

Détection du boson de Higgs dans le canal $\gamma\gamma$

Si l'énergie dans le centre de masse est suffisante, il est possible de produire un boson de Higgs dans la collision. Le boson de Higgs est instable et peut se désintégrer de différentes manières (on parle de "voies" ou de "canaux de désintégration"). Il peut par exemple se désintégrer en deux photons gamma (canal diphoton) : cette signature est l'une des plus faciles à mettre en évidence ("canal en or").

6.4 — Ecrivez l'équation-bilan de la désintégration du boson de Higgs (noté H) en deux photons gamma. On se place dans le référentiel du boson de Higgs \mathcal{R}_H : écrivez la conservation du quadrivecteur énergie-impulsion total avant et après la désintégration.

L'équation de la désintégration du boson de Higgs en deux photons s'écrit :

$$H \longrightarrow \gamma + \gamma$$

Du fait de la conservation du quadrivecteur énergie-impulsion total, on aura :

$$\widetilde{\mathbf{p}}_H = \widetilde{\mathbf{q}}_1 + \widetilde{\mathbf{q}}_2$$

où $\tilde{\mathbf{p}}_H$, $\tilde{\mathbf{q}}_1$ et $\tilde{\mathbf{q}}_2$ sont respectivement les quadrivecteurs énergie-impulsion du boson de Higgs avant sa désintégration, et des deux photons issus de sa désintégration.

Dans le référentiel du boson de Higgs \mathcal{R}_H , leurs composantes contravariantes sont :

$$\widetilde{\mathbf{p}}_{H}:p_{H}^{\mu}=\begin{pmatrix}m_{H}c\\\mathbf{0}\end{pmatrix}\qquad\widetilde{\mathbf{q}}_{1}:q_{1}^{\mu}=\begin{pmatrix}E_{1}/c=h\nu_{1}/c\\\hbar\mathbf{k}_{1}\end{pmatrix}\qquad\widetilde{\mathbf{q}}_{2}:q_{2}^{\mu}=\begin{pmatrix}E_{2}/c=h\nu_{2}/c\\\hbar\mathbf{k}_{2}\end{pmatrix}$$

Par conservation du vecteur quantité de mouvement, on a nécessairement

$$\hbar \mathbf{k}_1 + \hbar \mathbf{k}_2 = \mathbf{0}$$
 soit $\hbar \mathbf{k}_2 = -\hbar \mathbf{k}_1$.

On en déduit que les deux photons sont émis dos à dos dans le référentiel \mathcal{R}_H , avec des impulsions opposées; ils ont par conséquent la même énergie $E_{\gamma} = E_1 = E_2$ dans \mathcal{R}_H .

6.5 — Que vaut la masse invariante $m_{\gamma\gamma}$ du système formé par les deux photons issus de la désintégration du Higgs? Quelle est l'énergie de chaque photon dans le référentiel du Higgs \mathcal{R}_H ? Que vaut nécessairement l'angle entre les deux photons émis dans \mathcal{R}_H ?

D'après ce qui précède, dans \mathcal{R}_H les deux photons sont émis dos à dos, avec la même énergie et des impulsions opposées. L'angle entre les deux photons vaut nécessairement π .

Par conservation de l'énergie, on aura :

$$E_1 + E_2 = 2E_{\gamma} = m_H c^2$$
 soit $E_1 = E_2 = E_{\gamma} = \frac{m_H c^2}{2}$

La masse invariante du système constitué des deux photons s'écrit dans \mathcal{R}_H :

$$m_{\gamma\gamma}^2 c^2 = (\tilde{\mathbf{q}}_1 + \tilde{\mathbf{q}}_2)^2 = \left(\frac{E_1}{c} + \frac{E_2}{c}\right)^2 = 4\frac{E_{\gamma}^2}{c^2}$$

Soit,

$$m_{\gamma\gamma}^2 = 4\frac{E_{\gamma}^2}{c^4}$$
 $m_{\gamma\gamma} = 2\frac{E_{\gamma}}{c^2} = m_H$

6.6 — Écrivez maintenant le bilan de la désintégration du Higgs en deux photons dans le référentiel du laboratoire \mathcal{R} . Exprimez la masse invariante en fonction des énergies E_1 et E_2 de chacun des deux photons et de l'angle θ_{12} entre les deux photons. Exprimez la masse m_H du boson de Higgs en fonction de E_1 , E_2 et θ_{12} .

Dans le référentiel du laboratoire, en réutilisant les même notations mais cette fois dans \mathcal{R} , on a :

$$\widetilde{\mathbf{p}}_{H}:p_{H}^{\mu}=\begin{pmatrix}E_{H}/c\\\mathbf{p}_{H}\end{pmatrix}\qquad\widetilde{\mathbf{q}}_{\gamma1}:q_{\gamma1}^{\mu}=\begin{pmatrix}E_{1}/c=h\nu_{1}/c\\\hbar\mathbf{k}_{1}\end{pmatrix}\qquad\widetilde{\mathbf{q}}_{\gamma2}:q_{\gamma2}^{\mu}=\begin{pmatrix}E_{2}/c=h\nu_{2}/c\\\hbar\mathbf{k}_{2}\end{pmatrix}$$

où E_H , E_1 et E_2 sont cette fois les énergies du Higgs et des deux photons dans le référentiel \mathcal{R} , et \mathbf{p}_H , $\hbar \mathbf{k}_1$ et $\hbar \mathbf{k}_2$ les quantités de mouvement du boson de Higgs et des deux photons.

La masse invariante du système constitué des deux photons s'écrit alors :

$$m_{\gamma\gamma}^{2}c^{2} = (\tilde{\mathbf{q}}_{1} + \tilde{\mathbf{q}}_{2})^{2} = \tilde{\mathbf{q}}_{1}^{2} + \tilde{\mathbf{q}}_{2}^{2} + 2\tilde{\mathbf{q}}_{1} \cdot \tilde{\mathbf{q}}_{2} = 2\tilde{\mathbf{q}}_{1} \cdot \tilde{\mathbf{q}}_{2}$$

$$= 2\frac{E_{1}E_{2}}{c^{2}} - 2\hbar^{2}\mathbf{k}_{1} \cdot \mathbf{k}_{2} = 2\frac{E_{1}E_{2}}{c^{2}} - 2\frac{\hbar^{2}}{\lambda_{1}\lambda_{2}}\cos\theta_{12}$$

$$= 2\frac{E_{1}E_{2}}{c^{2}} - 2\frac{\hbar^{2}\nu_{1}\nu_{2}}{c^{2}}\cos\theta_{12} = 2\frac{E_{1}E_{2}}{c^{2}}\left[1 - \cos\theta_{12}\right]$$

$$m_{\gamma\gamma} = \sqrt{\frac{2E_{1}E_{2}}{c^{4}}\left(1 - \cos\theta_{12}\right)}$$

Par ailleurs, comme d'une part le quadrivecteur énergie-impulsion total est conservé (et donc sa pseudo-norme carrée), et que d'autre part la pseudo-norme carrée est un invariant de Lorentz, on a :

$$m_{\gamma\gamma}^2 c^2 = (\widetilde{\mathbf{q}}_1 + \widetilde{\mathbf{q}}_2)^2 = \widetilde{\mathbf{p}}_H^2 = m_H^2 c^2$$
 soit $m_H = m_{\gamma\gamma}$

La masse invariante du système constitué des deux photons est donc toujours égale à la masse du boson de Higgs, quel que soit le référentiel dans lequel on mesure l'énergie des deux photons.

6.7 — La figure 32 représente la distribution de la masse invariante $m_{\gamma\gamma}$ pour les événements où sont apparus deux photons γ de haute énergie. Il s'agit du premier lot de mesures effectuées dans l'expérience ATLAS au LHC, ayant permis la découverte du Higgs. Déduisez-en la masse du boson de Higgs.

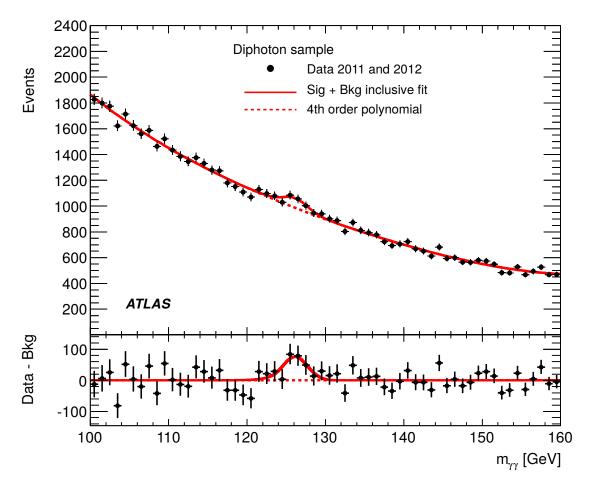


FIGURE 32 – Distribution de la masse invariante $m_{\gamma\gamma}$ mesurée pour tous les événements avec 2 photons de haute énergie dans l'expérience ATLAS au LHC (points noirs). En pointillés rouges, modélisation du fonds dû à toutes les autres réactions produisant principalement deux photons gamma. Première analyse du canal "diphoton", thèse de doctorat de Heberth Torres (2013), LPNHE.

La distribution de la masse invariante $m_{\gamma\gamma}$ présente un excès autour de $m_{\gamma\gamma}\approx 126\,{\rm GeV}/c^2$: la modélisation des processus connus produisant deux photons gamma ne permet pas d'en rendre compte. Cet excès est dû à la désintégration en deux photons d'une nouvelle particule, dont la masse est par conséquent $m_H=m_{\gamma\gamma}\approx 126\,{\rm GeV}/c^2$. C'est le boson de Higgs, dont l'existence avait été prédite par Robert Brout, François Englert et Peter Higgs en 1964. Sa découverte dans les expériences ATLAS et CMS au LHC a valu le prix Nobel de physique 2013 à François Englert et Peter Higgs.

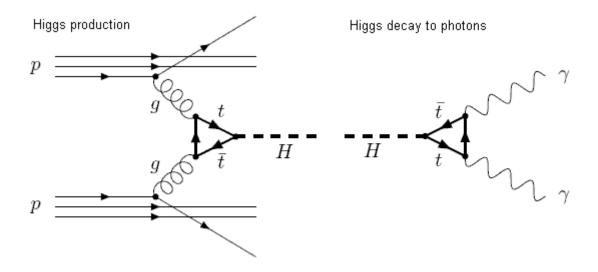


FIGURE 33 – Diagrammes de Feynman (le temps va de gauche à droite) : à gauche, production d'un boson de Higgs dans une collision de protons par fusion de gluons (les protons sont "détruits" dans ce type de collision); à droite, désintégration du boson de Higgs en deux photons.

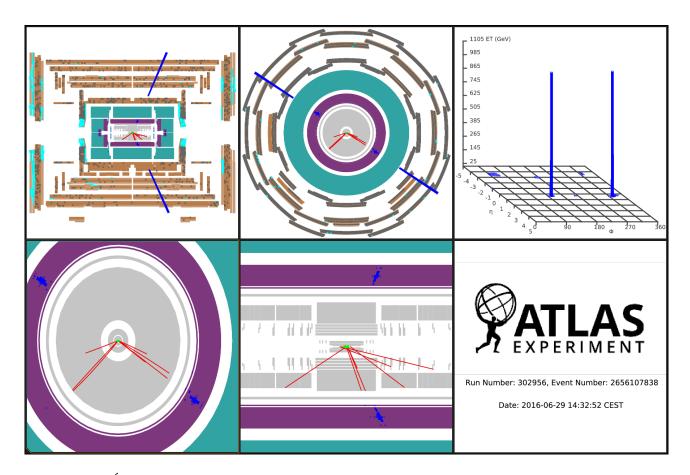


FIGURE 34 – Événement avec production de deux photons isolés de haute énergie dans l'état final. Expérience ATLAS, LHC. Les deux photons gamma se convertissent dans le détecteur, et forment deux gerbes de particules chargées (dépôts d'énergie indiqués en bleu)

5^{ème} Partie

Représentation relativiste du champ électromagnétique – Invariance de jauge – Force de Lorentz – Equation d'onde – Optique

1. Equations de Maxwell, invariance de jauge

1.1 — À partir des équations du champ électromagnétique sous leur forme relativiste,

$$\partial_{\mu}F^{\mu\nu} = \mu_{0}j^{\nu} \qquad \partial^{\sigma}F^{\mu\nu} + \partial^{\mu}F^{\nu\sigma} + \partial^{\nu}F^{\sigma\mu} = 0$$

retrouvez les quatre équations de Maxwell dans le vide.

Le tenseur du champ électromagnétique s'écrit :

$$\tilde{\mathbf{F}}: F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} = \begin{pmatrix} 0 & -E_{x}/c & -E_{y}/c & -E_{z}/c \\ E_{x}/c & 0 & -B_{z} & B_{y} \\ E_{y}/c & B_{z} & 0 & -B_{x} \\ E_{z}/c & -B_{y} & B_{x} & 0 \end{pmatrix}$$

En partant de la forme covariante de la première équation de Maxwell (lien entre les champs et les sources), on explicite l'expression en faisant varier l'indice ν de 0 à 3. Pour $\nu=0$, on obtient :

$$\partial_{\mu}F^{\mu 0} = \mu_0 j^0 = \mu_0 c \rho$$

Ce qui donne:

$$\partial_{0}F^{00} + \partial_{1}F^{10} + \partial_{2}F^{20} + \partial_{3}F^{30} = \mu_{0}c\rho$$

$$\frac{1}{c}\frac{\partial E_{x}}{\partial x} + \frac{1}{c}\frac{\partial E_{y}}{\partial y} + \frac{1}{c}\frac{\partial E_{z}}{\partial z} = \mu_{0}c\rho$$

$$\frac{\partial E_{x}}{\partial x} + \frac{\partial E_{y}}{\partial y} + \frac{\partial E_{z}}{\partial z} = \mu_{0}c^{2}\rho = \frac{\rho}{\varepsilon_{0}}$$

où on reconnaît l'équation de "Maxwell-Gauss" :

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

Explicitons maintenant l'équation sous forme covariante pour $\nu=1$. On obtient :

$$\partial_{\mu}F^{\mu 1} = \mu_0 j^1 = \mu_0 j_x$$

Ce qui donne:

$$\begin{array}{rcl} \partial_0 F^{01} + \partial_1 F^{11} + \partial_2 F^{21} + \partial_3 F^{31} & = & \mu_0 j_x \\ \\ -\frac{1}{c^2} \frac{\partial E_x}{\partial t} + \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} & = & \mu_0 j_x \\ \\ \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} & = & \mu_0 j_x + \mu_0 \varepsilon_0 \frac{\partial E_x}{\partial t} \end{array}$$

où on reconnaît la composante selon x de l'équation de "Maxwell-Ampère" :

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

En faisant de même pour $\nu=2$ et $\nu=3$, on retrouvera les composantes selon y et z de la même équation.

Si on considère maintenant la seconde équation (équation de structure du champ),

$$\partial^{\sigma} F^{\mu\nu} + \partial^{\mu} F^{\nu\sigma} + \partial^{\nu} F^{\sigma\mu} = 0$$

on constate qu'en énumérant toutes les combinaisons des trois indices μ , ν , σ , on obtient a priori $4\times 4\times 4=64$ équations différentes. En pratique, comme $F^{\mu\nu}$ est un tenseur antisymétrique, et du fait de la symétrie de l'équation par permutation des indices, seules les équations pour lesquelles μ , ν , σ prennent trois valeurs distinctes aboutissent à une expression non triviale. Il suffit dès lors de les énumérer.

Pour $\{\sigma, \mu, \nu\} = \{1, 2, 3\}$, on obtient :

$$\partial^1 F^{23} + \partial^2 F^{31} + \partial^3 F^{12} = 0$$

Soit,

$$\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = \boldsymbol{\nabla} \cdot \mathbf{B} = 0$$

où on reconnaît l'équation dite "Maxwell-Flux" (absence de sources du champ B, conservation du flux magnétique).

Si on prend $\{\sigma, \mu, \nu\} = \{0, 1, 2\}$, cela donne :

$$\partial^0 F^{12} + \partial^1 F^{20} + \partial^2 F^{01} = 0$$

Soit,

$$\frac{1}{c}\frac{\partial B_z}{\partial t} - \frac{\partial E_y}{\partial x} + \frac{\partial E_x}{\partial y} = 0 \qquad i.e. \quad \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = -\frac{\partial B_z}{\partial t}$$

où on reconnaît la composante selon z de l'équation de "Maxwell-Faraday",

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}.$$

En faisant de même pour $\{\sigma, \mu, \nu\} = \{0, 1, 3\}$ et $\{\sigma, \mu, \nu\} = \{0, 2, 3\}$, on retrouvera les composantes selon y et z de la même équation.

1.2 — Rappelez les expressions des champs \mathbf{E} et \mathbf{B} en fonction du potentiel scalaire V et du potentiel vecteur \mathbf{A} .

Les champs \mathbf{E} et \mathbf{B} se déduisent du potentiel scalaire V et du potentiel vecteur \mathbf{A} par :

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \qquad \mathbf{B} = \nabla \times \mathbf{A}.$$

1.3 — En partant du quadripotentiel $\widetilde{\mathbf{A}}:A^{\mu}=(V/c,\mathbf{A})$, Montrez comment les composantes parallèles $\mathbf{E}_{/\!/},\mathbf{B}_{/\!/}$ et perpendiculaires $\mathbf{E}_{\perp},\mathbf{B}_{\perp}$ se transforment par changement de référentiel.

Le quadripotentiel $\widetilde{\mathbf{A}}$ étant un quadrivecteur, lorsqu'on passe d'un référentiel inertiel \mathcal{R} à un autre référentiel inertiel \mathcal{R}' en translation uniforme à la vitesse v par rapport à \mathcal{R} , ses composantes contravariantes $A^{\mu} = (V/c, \mathbf{A})$ se transforment selon :

$$\begin{cases} A'^{0} = \gamma \left(A^{0} - \beta A^{1} \right) \\ A'^{1} = \gamma \left(A^{1} - \beta A^{0} \right) \\ A'^{2} = A^{2} \\ A'^{3} = A^{3} \end{cases}$$
 c'est à dire
$$\begin{cases} \frac{V'}{c} = \gamma \left(\frac{V}{c} - \beta A_{x} \right) \\ A'_{x} = \gamma \left(A_{x} - \beta \frac{V}{c} \right) \\ A'_{y} = A_{y} \\ A'_{z} = A_{z} \end{cases}$$

D'autre part, l'opérateur quadri-gradient $\widetilde{\nabla}$, de composantes covariantes $\partial_{\mu}=((1/c)\partial_{t},\nabla)$, se transforme selon :

$$\begin{cases} \partial'_0 = \gamma (\partial_0 + \beta \partial_1) \\ \partial'_1 = \gamma (\partial_1 + \beta \partial_0) \\ \partial'_2 = \partial_2 \\ \partial'_3 = \partial_3 \end{cases}$$
 i.e.
$$\begin{cases} \frac{1}{c} \frac{\partial}{\partial t'} = \gamma \left(\frac{1}{c} \frac{\partial}{\partial t} + \beta \frac{\partial}{\partial x} \right) \\ \frac{\partial}{\partial x'} = \gamma \left(\frac{\partial}{\partial x} + \beta \frac{1}{c} \frac{\partial}{\partial t} \right) \\ \frac{\partial}{\partial y'} = \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z'} = \frac{\partial}{\partial z} \end{cases}$$

Comme vu précédement, les champs ${\bf E}$ et ${\bf B}$ se déduisent du potentiel scalaire V et du potentiel vecteur ${\bf A}$ par :

$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} \qquad \mathbf{B} = \nabla \times \mathbf{A}.$$

D'autre part, on peut décomposer E et B en une composante parallèle au mouvement relatif entre les référentiels (ici, selon Ox et Ox'), et une composante transverse perpendiculaire au mouvement relatif :

$$\mathbf{E} = \mathbf{E}_{/\!/} + \mathbf{E}_{\perp}$$
 où $\mathbf{E}_{/\!/} = E_x \, \mathbf{e}_x$ et $\mathbf{E}_{\perp} = E_y \, \mathbf{e}_y + E_y \, \mathbf{e}_z$
 $\mathbf{B} = \mathbf{B}_{/\!/} + \mathbf{B}_{\perp}$ où $\mathbf{B}_{/\!/} = B_x \, \mathbf{e}_x$ et $\mathbf{B}_{\perp} = B_y \, \mathbf{e}_y + B_y \, \mathbf{e}_z$

Calculons la composante $E'_{/\!/}=E'_x$ du champ électrique dans le référentiel \mathcal{R}' . Elle s'écrit :

$$\begin{split} E'_{/\!/} &= E'_x = -\frac{\partial V'}{\partial x'} - \frac{\partial A'_x}{\partial t'} = -\gamma \left(\frac{\partial}{\partial x} + \frac{\beta}{c} \frac{\partial}{\partial t} \right) (\gamma V - \gamma \beta c A_x) - \gamma \left(\frac{\partial}{\partial t} + \beta c \frac{\partial}{\partial x} \right) \left(\gamma A_x - \gamma \beta \frac{V}{c} \right) \\ &= -\gamma^2 (1 - \beta^2) \left[\frac{\partial V}{\partial x} + \frac{\partial A_x}{\partial t} \right] = E_x = E_{/\!/}. \end{split}$$

La composante parallèle $E_{/\!/}$ du champ ${\bf E}$ n'est donc pas modifiée par le changement de référentiel. Procédons de même pour la composante E_y' :

$$E'_{y} = -\frac{\partial V'}{\partial y'} - \frac{\partial A'_{y}}{\partial t'} = -\frac{\partial}{\partial y} \left(\gamma V - \gamma \beta c A_{x} \right) - \gamma \left(\frac{\partial}{\partial t} + \beta c \frac{\partial}{\partial x} \right) A_{y}$$
$$= -\gamma \left(\frac{\partial V}{\partial y} + \frac{\partial A_{y}}{\partial t} \right) + \gamma \beta c \left(\frac{\partial A_{x}}{\partial y} - \frac{\partial A_{y}}{\partial x} \right)$$

Le premier terme est simplement γE_y , tandis qu'on reconnaît dans le second la composante $B_z = \partial_x A_y - \partial_y A_x$ du champ **B**. On obtient ainsi :

$$E_y' = \gamma \left(E_y - \beta c B_z \right)$$

En procédant de même pour la composante E'_z , on obtient :

$$E_z' = \gamma \left(E_z + \beta c B_y \right)$$

En remarquant que:

$$\beta c \times \mathbf{B}_{\perp} = \beta c \mathbf{e}_x \times (B_y \mathbf{e}_y + B_z \mathbf{e}_z) = \beta c B_y \mathbf{e}_z - \beta c B_z \mathbf{e}_y$$

on peut grouper les résultats précédents sous la forme :

$$\mathbf{E}_{\perp}' = E_{y}'\mathbf{e}_{y} + E_{z}'\mathbf{e}_{z} = \gamma \left(E_{y}\mathbf{e}_{y} + E_{z}\mathbf{e}_{z} - \beta cB_{z}\mathbf{e}_{y} + \beta cB_{y}\mathbf{e}_{z} \right) = \gamma \left(\mathbf{E}_{\perp} + \beta c \times \mathbf{B}_{\perp} \right)$$

Considérons maintenant la composante parallèle $B'_{/\!/}=B'_x$ du champ magnétique dans le référentiel \mathcal{R}' . De manière immédiate,

$$B'_{/\!/} = B'_x = \frac{\partial A'_z}{\partial y'} - \frac{\partial A'_y}{\partial z'} = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = B_x = B_{/\!/}$$

la composante parallèle du champ B n'est pas affectée par le changement de référentiel.

Pour la composante transverse \mathbf{B}'_{\perp} , calculons par exemple B'_{y} :

$$\begin{split} B_y' &= \frac{\partial A_x'}{\partial z'} - \frac{\partial A_z'}{\partial x'} = \frac{\partial}{\partial z} \left(\gamma A_x - \gamma \beta \frac{V}{c} \right) - \gamma \left(\frac{\partial}{\partial x} + \frac{\beta}{c} \frac{\partial}{\partial t} \right) A_z \\ &= \gamma \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) - \gamma \frac{\beta}{c} \left(\frac{\partial V}{\partial z} + \frac{\partial A_z}{\partial t} \right) \end{split}$$

Le premier terme est simplement γB_y , tandis qu'on reconnaît dans le second la composante $E_z = -\partial_z V - \partial_t A_z$:

$$B_y' = \gamma \left(B_y + \frac{\beta}{c} E_z \right).$$

De la même manière, on peut établir que :

$$B_z' = \gamma \left(B_z - \frac{\beta}{c} E_y \right).$$

En remarquant que :

$$\frac{\boldsymbol{\beta}}{c} \times \mathbf{E}_{\perp} = \frac{\beta}{c} \mathbf{e}_x \times (E_y \mathbf{e}_y + E_z \mathbf{e}_z) = \frac{\beta}{c} E_y \mathbf{e}_z - \frac{\beta}{c} E_z \mathbf{e}_y$$

les deux expressions précédentes peuvent se mettre sous la forme suivante :

$$\mathbf{B}'_{\perp} = B'_{y}\mathbf{e}_{y} + B'_{z}\mathbf{e}_{z} = \gamma \left(B_{y}\mathbf{e}_{y} + B_{z}\mathbf{e}_{z} + \frac{\beta}{c}E_{z}\mathbf{e}_{y} - \frac{\beta}{c}E_{y}\mathbf{e}_{z} \right) = \gamma \left(\mathbf{B}_{\perp} - \frac{\beta}{c} \times \mathbf{E}_{\perp} \right)$$

On trouve finalement les règles de transformation des composantes parallèles et transverses des champs ${\bf E}$ et ${\bf B}$:

$$\begin{cases} \mathbf{E'}_{/\!/} = \mathbf{E}_{/\!/} \\ \\ \mathbf{E'}_{\perp} = \gamma \left(\mathbf{E}_{\perp} + \beta c \times \mathbf{B}_{\perp} \right) \end{cases} \begin{cases} \mathbf{B'}_{/\!/} = \mathbf{B}_{/\!/} \\ \\ \mathbf{B'}_{\perp} = \gamma \left(\mathbf{B}_{\perp} - \frac{\beta}{c} \times \mathbf{E}_{\perp} \right) \end{cases}$$

1.4 — Le potentiel $\widetilde{\mathbf{A}}:A^{\mu}=(V/c,\mathbf{A})$ n'est pas défini de façon univoque. Montrez que pour toute fonction scalaire χ , la transformation suivante :

$$A_{\mu} \longrightarrow A_{\mu} + \partial_{\mu} \chi$$

laisse ${\bf E}$ et ${\bf B}$ inchangés. On parle d'invariance de jauge. Montrez que $F^{\mu\nu}$ vérifie l'invariance de jauge.

Supposons qu'on applique au quadripotentiel de composantes $A^{\mu}=(V/c,\mathbf{A})$ la transformation :

$$A_{\mu} \longrightarrow A_{\mu} + \partial_{\mu} \chi$$

Ou, ce qui revient au même,

$$A^{\mu} \longrightarrow A^{\mu} + \partial^{\mu} \chi$$

Le potentiel scalaire V et le potentiel vecteur $\mathbf A$ deviennent ainsi :

$$A^0 = \frac{V}{c} \longrightarrow \frac{V}{c} + \frac{1}{c} \frac{\partial \chi}{\partial t} \qquad \mathbf{A} \longrightarrow \mathbf{A} - \nabla \chi$$

Le champ électrique E est inchangé :

$$\begin{split} \mathbf{E} &= -\boldsymbol{\nabla}V - \frac{\partial \mathbf{A}}{\partial t} \longrightarrow -\boldsymbol{\nabla}\left(V + \frac{\partial \chi}{\partial t}\right) - \frac{\partial}{\partial t}\left(\mathbf{A} - \boldsymbol{\nabla}\chi\right) = -\boldsymbol{\nabla}V - \frac{\partial \mathbf{A}}{\partial t} - \boldsymbol{\nabla}\frac{\partial \chi}{\partial t} + \frac{\partial}{\partial t}\boldsymbol{\nabla}\chi \\ &= -\boldsymbol{\nabla}V - \frac{\partial \mathbf{A}}{\partial t} = \mathbf{E}. \end{split}$$

car les dérivées partielles commutent.

De même, le champ magnétique B est lui aussi inchangé :

$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} \longrightarrow \mathbf{\nabla} (\mathbf{A} - \mathbf{\nabla} \chi) = \mathbf{\nabla} \times \mathbf{A} - \mathbf{\nabla} \times \mathbf{\nabla} \chi = \mathbf{\nabla} \times \mathbf{A} = \mathbf{B}$$

Car le rotationnel d'un gradient est nul.

Si on utilise plutôt le tenseur du champ électromagnétique $F^{\mu\nu}$, l'invariance de $F^{\mu\nu}$ par changement de jauge est immédiate :

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} \longrightarrow \partial^{\mu}(A^{\nu} + \partial^{\nu}\chi) - \partial^{\nu}(A^{\mu} + \partial^{\mu}\chi) = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} + \partial^{\mu}\partial^{\nu}\chi - \partial^{\nu}\partial^{\mu}\chi$$
$$= \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} = F^{\mu\nu}$$

En fonction du problème traité, on pourra choisir la *jauge* la plus adaptée. On rencontre généralement les deux choix de jauge suivants :

Jauge de Coulomb :
$$\nabla \cdot \mathbf{A} = 0$$

Jauge de Lorenz :
$$\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial V}{\partial t} = 0$$

1.5 — Montrez que la condition de la jauge de Lorenz s'écrit simplement $\partial_{\mu}A^{\mu}=0$.

L'équivalence des deux expressions est immédiate, car :

$$\partial_{\mu}A^{\mu} = \frac{1}{c}\frac{\partial A^{0}}{\partial t} + \frac{\partial A^{1}}{\partial x} + \frac{\partial A^{2}}{\partial y} + \frac{\partial A^{3}}{\partial z} = \frac{1}{c}\frac{\partial A^{0}}{\partial t} + \boldsymbol{\nabla}\cdot\boldsymbol{\mathbf{A}} = \boldsymbol{\nabla}\cdot\boldsymbol{\mathbf{A}} + \frac{1}{c^{2}}\frac{\partial V}{\partial t}.$$

1.6 — Écrivez l'équation de propagation du potentiel $\tilde{\mathbf{A}}$ dans le vide. Montrez que cette équation prend une forme très simple dans la jauge de Lorenz.

Dans le vide, les densités de charge et de courant sont nulles, i.e. $j^{\mu}=(\rho c,\mathbf{j})=(0,\vec{0})$. La première équation de Maxwell sous forme covariante devient :

$$\partial_{\mu}F^{\mu\nu} = \mu_0 j^{\nu} = 0$$

Ce qu'on peut reformuler en faisant apparaître le quadripotentiel A^{μ} ,

$$\partial_{\mu}F^{\mu\nu} = \partial_{\mu}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) = \partial_{\mu}\partial^{\mu}A^{\nu} - \partial_{\mu}\partial^{\nu}A^{\mu} = \partial_{\mu}\partial^{\mu}A^{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = 0$$

qui est l'équation de propagation pour le quadripotentiel A^{μ} .

Si on choisit de se placer dans la jauge de Lorenz où $\partial_{\mu}A^{\mu}=0$, l'équation précédente se simplifie en :

$$\partial_{\mu}\partial^{\mu}A^{\nu}=0$$
 i.e. $\square A^{\nu}=0$.

La jauge de Coulomb est en général utilisée pour traiter des problèmes statiques, comme en électrostatique, tandis que la jauge de Lorenz est d'usage plus général en électrodynamique.

1.7 — Vérifiez que toute fonction de la forme $f(\tilde{\mathbf{r}}) = C \, e^{i \, \tilde{\mathbf{k}} \cdot \tilde{\mathbf{r}}}$ avec $\tilde{\mathbf{k}} : k^{\mu} = (\omega/c, \mathbf{k})$ est solution de l'équation $\Box f = 0$.

Soit une fonction f de la position $\tilde{\mathbf{r}}:r^{\mu}$ dans l'espace-temps, de forme :

$$f(r^{\mu}) = C e^{i \, \mathbf{k} \cdot \mathbf{r}} = C e^{i \, k_{\nu} r^{\nu}} = C e^{i \, k^{\nu} r_{\nu}}$$

où est C est une constante (amplitude de l'onde).

Les dérivations successives de f donnent :

$$\partial^{\mu} f = \frac{\partial f}{\partial r_{\mu}} = i \, k^{\mu} C \, e^{i \, k^{\nu} r_{\nu}} = i \, k^{\mu} C \, e^{i \, k_{\nu} r^{\nu}}$$

$$\partial_{\mu}\partial^{\mu}f = \frac{\partial}{\partial r^{\mu}}\left[i\,k^{\mu}C\,e^{i\,k_{\nu}r^{\nu}}\right] = -k^{\mu}k_{\mu}C\,e^{i\,k_{\nu}r^{\nu}} = -k^{\mu}k_{\mu}C\,e^{i\,k^{\nu}r_{\nu}}$$

Par conséquent, $f(r^{\mu})$ est solution de l'équation $\Box f = 0$ à condition d'avoir :

$$k^{\mu}k_{\mu}=0$$

La solution obtenue décrit la propagation d'une onde plane; on appelle $\mathbf{\tilde{k}}:k^{\mu}=(\omega/c,\mathbf{k})$ le quadrivecteur d'onde de cette onde plane. On reconnaît dans l'expression $k^{\mu}k_{\mu}=\omega^2/c^2-\mathbf{k}^2=0$ la relation de dispersion d'une onde plane dans le vide.

1.8 — Que reconnaissez-vous dans le produit $\varphi = \mathbf{k} \cdot \mathbf{r} = k_{\mu} r^{\mu}$? Est-ce un invariant de Lorentz? La contraction du quadrivecteur d'onde $\mathbf{k} : k^{\mu} = (\omega/c, \mathbf{k})$ avec le quadrivecteur position donne la phase φ de l'onde plane :

$$\varphi = \widetilde{\mathbf{k}} \cdot \widetilde{\mathbf{r}} = k_{\mu} r^{\mu} = k^{\mu} r_{\mu} = \frac{\omega}{c} ct - \mathbf{k} \cdot \mathbf{r} = \omega t - \mathbf{k} \cdot \mathbf{r}.$$

Comme on peut l'écrire comme le produit pseudo-scalaire de deux quadrivecteurs, la phase d'une onde plane est un invariant de Lorentz.

2. Accélération d'une particule chargée dans un champ électrique uniforme

Afin de comprendre la structure élémentaire de la matière, les physiciens des particules ont développé des techniques d'accélération des particules chargées (électrons, protons, ions, etc) permettant de produire des collisions à très haute énergie. L'analyse détaillée de chaque collision permet de mieux comprendre la sous-structure des particules, leurs interactions, et de découvrir de nouvelles particules. C'est ainsi qu'ont été découverts un ensemble de particules élémentaires prédites par le *Modèle Standard*: les quarks charm (c), bottom (b) et top (t); les bosons W⁺, W⁻ et Z; et enfin le boson de Higgs en 2012.

Le boson de Higgs a été mis en évidence au *Large Hadron Collider* dans des collisions de protons dont l'énergie cinétique est de plusieurs téra-électrons-volts (TeV). Pour atteindre cette énergie, les protons sont injectés et accélérés dans une succession d'accélérateurs de plus en plus puissants (fig. 35). Les faisceaux de protons entrent en collision en 4 points du LHC, où sont placés 4 énormes détecteurs de particules dédiés : ATLAS, CMS, LHCb et ALICE.

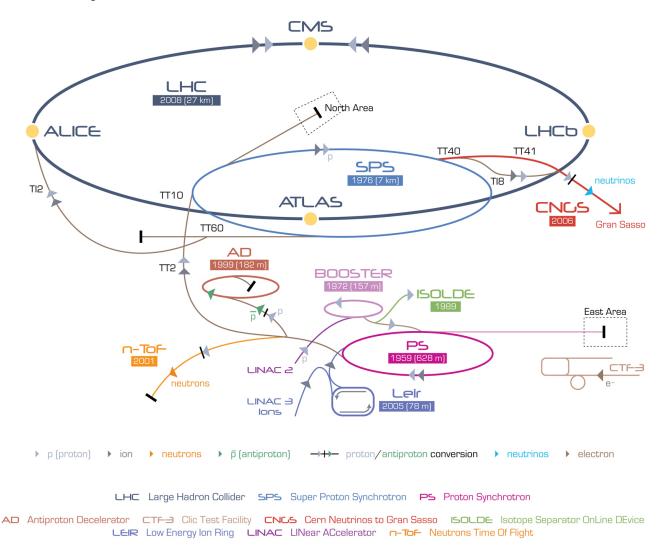


FIGURE 35 – Structure des accélérateurs de particules du CERN (Genève). Les protons sont d'abord accélérés dans l'accélérateur linéaire "LINAC 2" ($T=50~{\rm MeV}$), puis injectés et accélérés dans le synchrotron "PS Booster" ($T=1.4~{\rm GeV}$), puis dans le PS ($T=25~{\rm GeV}$), le SPS ($T=450~{\rm GeV}$) et enfin le LHC lui-même ($T=7~{\rm TeV}$).

Accélération d'une particule chargée dans un champ électrique uniforme

La source des protons du LHC est une bouteille d'hydrogène gazeux, située à l'entrée du LINAC 2. L'hydrogène est soumis à un champ électrique, qui arrache ses électrons afin de ne laisser entrer dans l'accélérateur que les protons.

Dans sa forme la plus simple, un accélérateur linéaire LINAC consiste en un tube à vide contenant une succession de cylindres conducteurs, dont les charges électriques alternent (fig. 36). Les particules chargées sont injectées par paquets, et on inverse périodiquement la charge électrique des conducteurs cylindriques, afin de toujours accélérer les particules lors du franchissement de l'espace séparant deux cylindres de charges opposées (région de champ électrique uniforme \mathbf{E}_{kin} sur la figure).

On se propose dans cette première partie de calculer dans le cadre relativiste le comportement d'une particule accélérée sous l'effet d'un champ électrique uniforme.

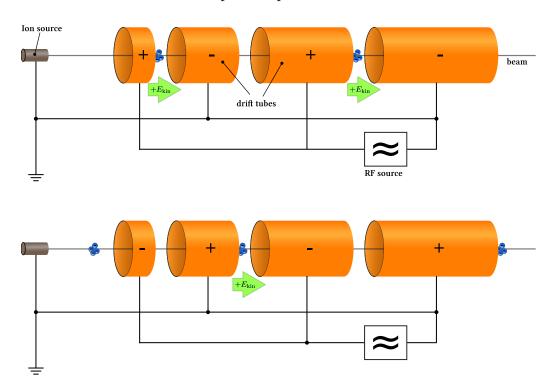


FIGURE 36 – Principe de fonctionnement d'un accélérateur linéaire (LINAC) dans sa forme la plus simple. Les particules sont injectées par paquets (pulses). Les cylindres conducteurs portent des charges électriques alternées, que l'on inverse périodiquement. Lorsque les particules passent d'un cylindre au suivant, elles subissent le champ électrique \mathbf{E}_{kin} : l'inversion périodique des charges des cylindres permet de toujours accélérer les particules dans le même sens.

2.1 — Question de cours : à partir de l'équation de Maxwell écrite sous forme covariante :

$$\partial_{\mu}F^{\mu\nu} = \mu_0 j^{\nu}$$

Retrouvez les deux équations de Maxwell sous leur forme habituelle (équations exprimant les relations entre les champs et les sources).

On rappelle la forme du tenseur du champ électromagnétique $F^{\mu\nu}$:

$$\widetilde{\mathbf{F}}: F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix}$$

En partant de sa forme covariante, on explicite l'équation en faisant varier l'indice ν de 0 à 3.

Pour $\nu = 0$, on obtient :

$$\partial_{\mu}F^{\mu 0} = \mu_0 j^0 = \mu_0 c \rho$$

Ce qui donne:

$$\begin{array}{rcl} \partial_0 F^{00} + \partial_1 F^{10} + \partial_2 F^{20} + \partial_3 F^{30} & = & \mu_0 c \rho \\ \\ \frac{1}{c} \frac{\partial E_x}{\partial x} + \frac{1}{c} \frac{\partial E_y}{\partial y} + \frac{1}{c} \frac{\partial E_z}{\partial z} & = & \mu_0 c \rho \\ \\ \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} & = & \mu_0 c^2 \rho = \frac{\rho}{\varepsilon_0} \end{array}$$

où on reconnaît l'équation de Maxwell-Gauss:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

Explicitons maintenant l'équation sous forme covariante pour $\nu=1$. On obtient :

$$\partial_{\mu}F^{\mu 1} = \mu_0 j^1 = \mu_0 j_x$$

Ce qui donne:

$$\begin{array}{rcl} \partial_0 F^{01} + \partial_1 F^{11} + \partial_2 F^{21} + \partial_3 F^{31} & = & \mu_0 j_x \\ \\ -\frac{1}{c^2} \frac{\partial E_x}{\partial t} + \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} & = & \mu_0 j_x \\ \\ \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} & = & \mu_0 j_x + \mu_0 \varepsilon_0 \frac{\partial E_x}{\partial t} \end{array}$$

où on reconnaît la composante selon x de l'équation de Maxwell-Ampère :

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$

En faisant de même pour $\nu=2$ et $\nu=3$, on retrouvera les composantes selon y et z de la même équation.

2.2 — Rappelez l'expression du quadrivecteur énergie-impulsion $\tilde{\mathbf{p}}$ et celle de ses composantes contravariantes p^{μ} et covariantes p_{μ} .

On construit le quadrivecteur énergie-impulsion (ou quadri-impulsion) \tilde{p} comme suit :

$$\widetilde{\mathbf{p}} = m \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}\tau} = m\widetilde{\mathbf{U}}$$

Ses composantes contravariantes s'écrivent :

$$p^{\mu} = \begin{pmatrix} \gamma(u)mc \\ \gamma(u)m\mathbf{u} \end{pmatrix} = \begin{pmatrix} E/c = \gamma(u)mc \\ \mathbf{p} = \gamma(u)m\mathbf{u} \end{pmatrix} \quad \text{avec } E \text{ l'énergie totale de l'objet étudié.}$$

De même, ses composantes covariantes s'écrivent :

$$p_{\mu} = g_{\mu\nu}p^{\nu} = \begin{pmatrix} \gamma(u)mc \\ -\gamma(u)m\mathbf{u} \end{pmatrix} = \begin{pmatrix} E/c = \gamma(u)mc \\ -\mathbf{p} = -\gamma(u)m\mathbf{u} \end{pmatrix}$$

Dans ces relations, m est la masse propre de l'objet (c'est à dire sa masse au repos), $\gamma(u)m > m$ est en quelque sorte sa "masse apparente", et $E = \gamma(u)mc^2$ son énergie totale, somme de son énergie de masse $E_0 = mc^2$ et de son énergie cinétique $T = E - mc^2 = (\gamma(u) - 1)mc^2$.

La pseudo-norme carrée de $\tilde{\mathbf{p}}$ vaut $\tilde{\mathbf{p}}^2 = m^2 c^2 = (mc^2)^2/c^2$.

Les composantes de $\widetilde{\mathbf{p}}$ vérifient les relations suivantes, très utiles :

$$\widetilde{\mathbf{p}}^2 = (mc^2)^2/c^2 = \left(\frac{E}{c}\right)^2 - \mathbf{p}^2 \quad \text{i.e.} \quad E^2 = p^2c^2 + m^2c^4$$

$$\vec{\beta} = \frac{\mathbf{p}}{p^0} = \frac{\mathbf{p}c}{E} \quad \text{et} \quad \gamma = \frac{E}{mc^2}$$

2.3 — Par analogie avec la mécanique classique, on définit le quadrivecteur force $\tilde{\mathbf{f}}$ par :

$$\widetilde{\mathbf{f}} = \frac{\mathrm{d}\widetilde{\mathbf{p}}}{\mathrm{d}\tau}$$

Est-ce bien un quadrivecteur? Justifiez. Ecrivez les composantes f^{μ} de $\mathbf{\widetilde{f}}$ en fonction des dérivées par rapport à t de l'énergie E de la particule et de sa quantité de mouvement \mathbf{p} .

 $\tilde{\mathbf{f}}$ est la dérivée d'un quadrivecteur par rapport au temps propre au, qui est un invariant de Lorentz : ses composantes se transforment donc bien selon Lorentz, et $\tilde{\mathbf{f}}$ possède bien les propriétés d'un quadrivecteur.

On a donc:

$$\widetilde{\mathbf{f}} = \frac{\mathrm{d}\widetilde{\mathbf{p}}}{\mathrm{d}\tau} = \frac{\mathrm{d}t}{\mathrm{d}\tau} \frac{\mathrm{d}\widetilde{\mathbf{p}}}{\mathrm{d}t} = \gamma(u) \frac{\mathrm{d}\widetilde{\mathbf{p}}}{\mathrm{d}t}$$

Pour les composantes contravariantes, cela donne :

$$f^{\mu} = \gamma(u) \frac{\mathrm{d}p^{\mu}}{\mathrm{d}t}$$
 avec $p^{\mu} = \left(\frac{E}{c}, \mathbf{p}\right)$

D'où

$$f^{\mu} = \left(\gamma(u)\frac{1}{c}\frac{\mathrm{d}E}{\mathrm{d}t}, \gamma(u)\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}\right)$$

2.4 — Montrez que pour une particule de quadrivitesse $\widetilde{\mathbf{U}}$ subissant une quadriforce $\widetilde{\mathbf{f}}$, on a $\widetilde{\mathbf{f}} \cdot \widetilde{\mathbf{U}} = f^{\mu}U_{\mu} = 0$. Déduisez-en que :

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \mathbf{f} \cdot \mathbf{u}$$

où on notera

$$\mathbf{f} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{\mathrm{d}\left(\gamma(u)m\mathbf{u}\right)}{\mathrm{d}t}$$

Le quadrivecteur vitesse $\widetilde{\mathbf{U}}$ vérifie :

$$\widetilde{\mathbf{U}}^2 = U_{\mu}U^{\mu} = g_{\mu\nu}U^{\mu}U^{\nu} = c^2$$
 d'où $\frac{\mathrm{d}\widetilde{\mathbf{U}}^2}{\mathrm{d}\tau} = 2\frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau} \cdot \widetilde{\mathbf{U}} = 0$

Or, le pseudo-produit scalaire $\widetilde{f}\cdot \widetilde{U}$ peut encore s'écrire :

$$\widetilde{\mathbf{f}} \cdot \widetilde{\mathbf{U}} = \frac{\mathrm{d}\widetilde{\mathbf{p}}}{\mathrm{d}\tau} \cdot \widetilde{\mathbf{U}} = m \frac{\mathrm{d}\widetilde{\mathbf{U}}}{\mathrm{d}\tau} \cdot \widetilde{\mathbf{U}}$$
 d'où $\widetilde{\mathbf{f}} \cdot \widetilde{\mathbf{U}} = f^{\mu}U_{\mu} = 0$

Si on explicite cette dernière relation avec les composantes f^{μ} et U_{μ} , on trouve :

$$\widetilde{\mathbf{f}} \cdot \widetilde{\mathbf{U}} = f^{\mu} U_{\mu} = \gamma^{2}(u) \left[\frac{\mathrm{d}E}{\mathrm{d}t} - \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \cdot \mathbf{u} \right] = 0$$

d'où on déduit immédiatement :

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \cdot \mathbf{u} = \mathbf{f} \cdot \mathbf{u}.$$

On retrouve ici un résultat analogue (d'un point de vue formel) à la mécanique classique : la variation de l'énergie d'une particule par unité de temps est égale à la puissance des forces appliquées sur cette particule.

Dans le référentiel du laboratoire, on considère une région de l'espace où règne un champ électrique uniforme et constant $\mathbf{E} = E_x \mathbf{e}_x$.

2.5 — Donnez explicitement $F^{\mu\nu}$ dans la région de l'espace où ${\bf E}=E_x{\bf e}_x.$

Dans le référentiel du laboratoire, les composantes contravariantes $F^{\mu\nu}$ du tenseur du champ électromagnétique se réduisent à :

On considère une particule de charge q placé dans le champ : on note $\tilde{\mathbf{r}}$ sa position, \mathbf{u} son vecteur vitesse et $\tilde{\mathbf{U}}$ sa quadri-vitesse. Les composantes contravariantes de la quadriforce de Lorentz $\tilde{\mathbf{f}}$ qu'elle subit s'écrivent :

$$f^{\mu} = qF^{\mu}_{\ \nu} U^{\nu} = qF^{\mu\nu} U_{\nu}. \tag{34}$$

2.6 — Rappelez l'expression des composantes contravariantes U^{μ} et covariantes U_{μ} de la quadrivitesse $\widetilde{\mathbf{U}}$.

Le quadrivecteur vitesse $\widetilde{\mathbf{U}}$ est défini par :

$$\widetilde{\mathbf{U}} = \frac{\mathrm{d}\widetilde{\mathbf{r}}}{\mathrm{d}\tau}$$

Ses composantes contravariantes s'écrivent :

$$U^{\mu} = \begin{pmatrix} \gamma(u)c \\ \gamma(u)\mathbf{u} \end{pmatrix}$$

Et ses composantes covariantes sont :

$$U_{\mu} = g_{\mu\nu}U^{\nu} = \begin{pmatrix} \gamma(u)c \\ -\gamma(u)\mathbf{u} \end{pmatrix}$$

2.7 — À partir de l'équation (34), donnez explicitement les composantes f^0 , f^1 , f^2 et f^3 du quadrivecteur $\tilde{\mathbf{f}}$.

Les composantes contravariantes f^{μ} du quadrivecteur force de Lorentz $\widetilde{\mathbf{f}}$ vérifient :

$$f^{\mu} = q F^{\mu}_{\ \nu} U^{\nu} = q F^{\mu\nu} U_{\nu}.$$

Écrivons explicitement chaque composante. On a ainsi:

$$f^{0} = qF^{00} U_{0} + qF^{01} U_{1} + qF^{02} U_{2} + qF^{03} U_{3} = \gamma(u)qE_{x} \frac{u_{x}}{c}$$

$$f^{1} = qF^{10} U_{0} + qF^{11} U_{1} + qF^{12} U_{2} + qF^{13} U_{3} = \gamma(u)qE_{x}$$

$$f^{2} = qF^{20} U_{0} + qF^{21} U_{1} + qF^{22} U_{2} + qF^{23} U_{3} = 0$$

$$f^{3} = qF^{30} U_{0} + qF^{31} U_{1} + qF^{32} U_{2} + qF^{33} U_{3} = 0$$

Ce qui donne:

$$f^{\mu} = \left(\gamma(u)qE_x \frac{u_x}{c}, \gamma(u)qE_x \mathbf{e}_x\right)$$

2.8 — Déduisez-en les équations différentielles auxquelles obéissent l'énergie E et la quantité de mouvement \mathbf{p} de la particule qui subit le champ électrique. Montrez que

$$\frac{\mathrm{d}(\gamma(u)\mathbf{u})}{\mathrm{d}t} = \frac{qE_x}{m}\,\mathbf{e}_x = a\,\mathbf{e}_x \qquad \text{avec} \quad a = \frac{qE_x}{m}$$

D'après la question précédente, la force de Lorentz s'écrit ici :

$$f^{\mu} = \left(\gamma(u)qE_x \frac{u_x}{c}, \gamma(u)qE_x \mathbf{e}_x\right)$$

Or, on a par ailleurs:

$$f^{\mu} = \left(\gamma(u)\frac{1}{c}\frac{\mathrm{d}E}{\mathrm{d}t}, \gamma(u)\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}\right)$$

En identifiant, on trouve immédiatement :

$$qE_x \frac{u_x}{c} = \frac{1}{c} \frac{dE}{dt}$$
 et $\frac{d\mathbf{p}}{dt} = qE_x \mathbf{e}_x$.

Cette dernière équation peut encore s'écrire :

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = m \frac{\mathrm{d}(\gamma(u)\mathbf{u})}{\mathrm{d}t} = qE_x \,\mathbf{e}_x \qquad \text{soit} \qquad \frac{\mathrm{d}(\gamma(u)\mathbf{u})}{\mathrm{d}t} = \frac{qE_x}{m} \,\mathbf{e}_x.$$

2.9 — À t = 0 la particule est immobile ($\mathbf{u} = \mathbf{0}$) dans le référentiel du laboratoire à la position $\mathbf{r} = \mathbf{0}$. Déduisez-en l'expression de la vitesse u en fonction du temps (on aura avantage à faire apparaître la rapidité φ).

Lorsque $t \longrightarrow +\infty$, vers quelle valeur tend u? Comparez avec le cas classique.

À partir de l'équation précédente,

$$d(\gamma(u)\mathbf{u}) = \frac{qE_x}{m} \,\mathbf{e}_x \,dt$$

Ce qui donne, en intégrant,

$$\gamma(u)\mathbf{u} = \gamma(u(t=0))\mathbf{u}(t=0) + \int_0^t \frac{qE_x}{m} \mathbf{e}_x dt = \frac{qE_xt}{m} \mathbf{e}_x$$

La vitesse u est par conséquent selon \mathbf{e}_x : $\mathbf{u} = u \, \mathbf{e}_x$. En remplaçant $\gamma(u)$ par son expression,

$$\frac{u}{\sqrt{1 - \frac{u^2}{c^2}}} = \frac{qE_x t}{m} = at$$

en posant $a = qE_x/m$. Ce qui donne :

$$u = \frac{at}{\sqrt{1 + \frac{a^2 t^2}{c^2}}}$$

Pour de grandes valeurs de t, autrement dit au bout d'un temps assez long, la vitesse de la particule accélérée tend vers c:

$$u = \frac{at}{\sqrt{1 + \frac{a^2 t^2}{c^2}}} = \frac{c}{\sqrt{1 + \frac{c^2}{a^2 t^2}}} \xrightarrow[t \to +\infty]{} c$$

Dans le traitement classique de ce phénomène, l'accélération de la particule serait $du/dt = qE_x/m = a$, et on obtiendrait une trajectoire rectiligne uniformément accélérée :

$$u = at = \frac{qE_x}{m}t$$
 et $x = \frac{1}{2}at^2$

La description classique n'interdit donc pas à la particule d'atteindre au bout d'un temps t=c/a la vitesse de la lumière, puis de la dépasser. Le traitement relativiste du même problème physique interdit cela, en accord avec l'expérience.

2.10 — Déduisez-en la trajectoire de la particule et donnez l'expression de $r^{\mu}=(ct,x,y,z)$ en fonction de t. On aura avantage à faire apparaître la rapidité $\varphi=\operatorname{argtanh}\beta$. Montrez que pour $at\ll c$, on retrouve le résultat classique $x(t)=at^2/2$.

D'après ce qui précède, la vitesse u(t) s'écrit :

$$u = \frac{at}{\sqrt{1 + \frac{a^2 t^2}{c^2}}} = c \tanh \varphi$$

En se souvenant que $\gamma(u)=\cosh \varphi$ et que $\beta\gamma=\sinh \varphi$, on trouve :

$$\cosh\varphi = \gamma(u) = \left(1 - \frac{u^2}{c^2}\right)^{-1/2} = \sqrt{1 + \frac{a^2t^2}{c^2}} \qquad \text{et} \qquad \sinh\varphi = \sqrt{\cosh^2\varphi - 1} = \frac{at}{c}$$

De l'équation différentielle précédente,

$$d(\gamma(u)\mathbf{u}) = \frac{qE_x}{m} \mathbf{e}_x dt = a, \mathbf{e}_x dt$$

on tire aussi une relation entre φ et t :

$$d(\gamma(u)u) = c d(\cosh \varphi \tanh \varphi) = a dt \qquad d'où \qquad dt = -\frac{c}{a} d(\sinh \varphi) = -\frac{c}{a} \cosh \varphi d\varphi$$

On peut désormais exprimer $\mathrm{d}x$ en fonction de φ :

$$dx = u dt = \frac{at dt}{\sqrt{1 + \frac{a^2 t^2}{c^2}}} = \frac{c^2}{a} \frac{\sinh \varphi \cosh \varphi d\varphi}{\cosh \varphi} = \frac{c^2}{a} \sinh \varphi d\varphi$$

D'où on déduit, en intégrant le long de la trajectoire :

$$x(t) = x(0) + \int_0^t dx = \frac{c^2}{a} \int_{\varphi(0)}^{\varphi(t)} \sinh \varphi \, d\varphi = \frac{c^2}{a} \left[\cosh \varphi(t) - 1 \right] = \frac{c^2}{a} \left[\sqrt{1 + \frac{a^2 t^2}{c^2}} - 1 \right].$$

Ce qui donne:

$$\widetilde{\mathbf{r}}(t): r^{\mu}(t) = \left(ct, \frac{c^2}{a} \left[\sqrt{1 + \frac{a^2 t^2}{c^2}} - 1 \right], 0, 0 \right)$$

Lorsque $at \ll c$, on retrouve le résultat classique :

$$x(t) = \frac{c^2}{a} \left[\sqrt{1 + \frac{a^2 t^2}{c^2} - 1} \right] \simeq \frac{c^2}{a} \left[1 + \frac{1}{2} \frac{a^2 t^2}{c^2} - 1 \right] = \frac{1}{2} a t^2$$

3. Champ électromagnétique produit par un fil infini chargé

On considère un fil infini le long de l'axe Oz, de section s négligeable devant les dimensions du problème. On se placera toujours à l'extérieur du fil.

Dans le référentiel \mathcal{R} galiléen, solidaire avec le matériau constituant le fil, le fil porte une charge électrique uniformément répartie : la densité volumique de charge est ρ , et la densité linéique $\lambda = \rho s$. Ces charges électriques sont animées d'un mouvement uniforme à la vitesse $\mathbf{v} = v \, \mathbf{e_z}$, créant ainsi dans le fil une densité de courant $\mathbf{j} = \rho \, \mathbf{v}$.

3.1. Courant et densité de charge

3.1 — Exprimez le courant électrique I qui circule dans le fil en fonction de \mathbf{j} et s, puis en fonction de ρ , v et s.

Le courant électrique I est simplement le flux du vecteur densité de courant à travers la section du fil :

$$I = \iint_{S} \mathbf{j} \cdot d\mathbf{S} = \iint_{S} \mathbf{j} \cdot \mathbf{e_z} dS = j s = \rho v s$$

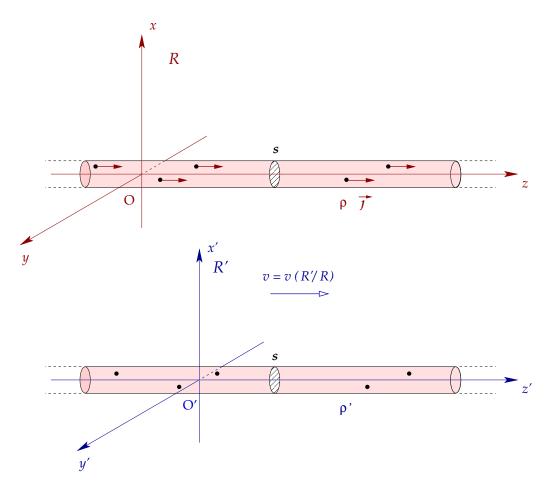


FIGURE 37 – Fil infini chargé, parcouru par un courant. Points de vue : dans le référentiel \mathcal{R} du fil (haut); dans le référentiel \mathcal{R}' en mouvement avec les charges (bas).

On se place maintenant dans le référentiel \mathcal{R}' , en translation uniforme par rapport à \mathcal{R} à la vitesse \mathbf{v} , tel que $\mathbf{v}(\mathcal{R}'/\mathcal{R}) = \mathbf{v} = v \, \mathbf{e_z}$.

- **3.2** Dans le référentiel \mathcal{R}' , que vaut le courant électrique I' dans le fil? La densité de courant \mathbf{j}' ? Dans le référentiel \mathcal{R}' , les charges sont immobiles : la densité de courant \mathbf{j}' et le courant I' sont donc nuls.
- 3.3 Écrivez la transformation de Lorentz entre les référentiels \mathcal{R} et \mathcal{R}' . Attention! Le mouvement relatif n'est pas selon Ox mais selon Oz!

Avec les conventions choisies, la transformation s'écrit :

$$\begin{cases} t' &= \frac{t - vz/c^2}{\sqrt{1 - \frac{v^2}{c^2}}} \\ x' &= x \\ y' &= y \\ z' &= \frac{z - vt}{\sqrt{1 - \frac{v^2}{c^2}}} \end{cases} \text{ i.e. } \begin{cases} ct' &= \gamma \left(ct - \beta z \right) \\ x' &= x \\ y' &= y \\ z' &= \gamma \left(z - \beta ct \right) \end{cases} \text{ et réciproquement } \begin{cases} ct &= \gamma \left(ct' + \beta z' \right) \\ x &= x' \\ y &= y' \\ z' &= \gamma \left(z' + \beta ct' \right) \end{cases}$$

On peut mettre ces équations sous une forme matricielle :

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & \beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta\gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix}$$

3.4 — Montrez que pour un quadrivecteur quelconque $\widetilde{\mathbf{A}}$ de composantes contravariantes A^{ν} , la matrice $[\mathbf{L}]$ qui permet d'exprimez les composantes $A'^{\mu} = [\mathbf{L}]^{\mu}{}_{\nu}A^{\nu}$ dans \mathcal{R}' en fonction des composantes A^{ν} dans \mathcal{R} s'écrit :

$$\mathcal{R} \to \mathcal{R}' \qquad A'^{\mu} = \sum_{\nu} \left[\mathbf{L} \right]^{\mu}_{\ \nu} A^{\nu} = \left[\mathbf{L} \right]^{\mu}_{\ \nu} A^{\nu} \quad \text{avec} \quad \left[\mathbf{L} \right]^{\mu}_{\ \nu} = \begin{pmatrix} \gamma & 0 & 0 & -\beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta \gamma & 0 & 0 & \gamma \end{pmatrix}$$

Donnez la matrice inverse \mathbf{L}^{-1} telle que $A^{\mu} = \left[\mathbf{L}^{-1}\right]^{\mu}_{\ \nu} A'^{\nu}$. Comment se transforment les composantes covariantes A_{ν} lorsqu'on passe du référentiel \mathcal{R} au référentiel \mathcal{R}' ?

Soyez très attentif au choix des axes effectué dans l'énoncé : le mouvement relatif est selon ez.

Pour un quadrivecteur quelconque $\widetilde{\mathbf{A}}$ de composantes contravariantes A^{ν} dans \mathcal{R} , ses composantes A'^{μ} dans \mathcal{R}' s'obtiennent par la relation :

$$\mathcal{R} \to \mathcal{R}' \qquad A'^{\mu} = \sum_{\nu} \left[\mathbf{L} \right]^{\mu}_{\ \nu} A^{\nu} = \left[\mathbf{L} \right]^{\mu}_{\ \nu} A^{\nu} \quad \text{avec} \quad \left[\mathbf{L} \right]^{\mu}_{\ \nu} = \begin{pmatrix} \gamma & 0 & 0 & -\beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta \gamma & 0 & 0 & \gamma \end{pmatrix}$$

Et réciproquement,

$$\mathcal{R}' \to \mathcal{R} \qquad A^{\mu} = \sum_{\nu} \left[\mathbf{L}^{-1} \right]^{\mu}_{\ \nu} A'^{\nu} = \left[\mathbf{L}^{-1} \right]^{\mu}_{\ \nu} A'^{\nu} \quad \text{avec} \quad \left[\mathbf{L}^{-1} \right]^{\mu}_{\ \nu} = \begin{pmatrix} \gamma & 0 & 0 & \beta \gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta \gamma & 0 & 0 & \gamma \end{pmatrix}$$

3.5 — Que vaut l'abscisse z' du point origine O' dans le référentiel \mathcal{R}' ? Exprimez z'(O') en fonction de sa position z(O') dans \mathcal{R} et du temps t.

On a immédiatement z'(O') = 0. En utilisant la transformation de Lorentz, on peut aussi écrire :

$$z'(O') = 0 = \gamma \left(z(O') - \beta ct\right) \tag{35}$$

3.6 — Considérons un point A' fixe dans \mathcal{R}' , placé sur l'axe O'z' à une distance $z'(A') = \ell'$ de l'origine O'. Exprimez z'(A') dans \mathcal{R}' en fonction de sa position z(A') dans \mathcal{R} et du temps t.

Comme précédemment, en appliquant la transformation de Lorentz, on obtient,

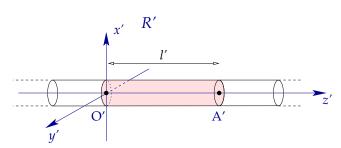
$$z'(A') = \ell' = \gamma \left(z(A') - \beta ct \right) \tag{36}$$

3.7 — En vous souvenant que la longueur d'un objet se mesure dans un référentiel donné en repérant la position de ses extrémités *au même instant* dans ce référentiel, déduisez-en la relation entre $\ell = z(A') - z(O')$ et $\ell' = z'(A') - z'(O')$.

En combinant les équations (35) et (36), et en se souvenant de la définition d'une distance dans \mathcal{R} (différence des positions prises au même temps t), on trouve immédiatement :

$$\ell' = z'(A') - z'(O') = \gamma \left(z(A') - \beta ct \right) - \gamma \left(z(O') - \beta ct \right) = \gamma \left(z(A') - z(O') \right) = \gamma \ell \qquad i.e \qquad \ell = \frac{\ell'}{\gamma}$$

3.8 — Considérons le volume cylindrique du fil délimité par les points O' et A' (figure ci-contre). Quel est son volume V (respectivement V) dans le référentiel \mathcal{R} (resp. \mathcal{R}')? En utilisant le fait que la charge électrique totale Q contenue dans ce cylindre est la même dans les deux référentiels, déduisez-en la relation qui relie la densité de charge électrique ρ vue dans \mathcal{R} et ρ' vue dans \mathcal{R}' .



Le volume délimité par les points O' et A' vaut :

$$V = s\ell$$
 (dans \mathcal{R}) et $V' = s\ell' = \gamma s\ell$ (dans \mathcal{R}')

On en déduit l'expression de la charge électrique Q contenu dans ce volume :

$$Q = \rho V = \rho s \ell$$
 (dans \mathcal{R}) et $Q = \rho' V' = \gamma \rho' s \ell$ (dans \mathcal{R}')

D'où,

$$Q = \rho s \ell = \gamma \rho' s \ell$$
 i.e. $\rho = \gamma \rho'$ $\rho' = \frac{\rho}{\gamma}$

3.9 — Retrouvez la relation entre ρ et ρ' en écrivant le quadrivecteur-courant $\tilde{\mathbf{j}}$: $j^{\mu}=(\rho c,\mathbf{j})$ dans les deux référentiels et en exploitant l'invariance de $\tilde{\mathbf{j}}^2=j^{\mu}j_{\mu}$.

Dans \mathcal{R} et \mathcal{R}' , le quadrivecteur courant s'écrit respectivement :

$$\widetilde{\mathbf{j}}:j^{\mu}=(\rho c,\mathbf{j}=\rho\mathbf{v})\quad (\mathcal{R}) \qquad \qquad \widetilde{\mathbf{j}'}:j'^{\mu}=\left(\rho'c,\mathbf{0}\right)\quad (\mathcal{R}')$$

L'invariance de la pseudo-norme carrée de \tilde{j} permet d'écrire :

$$\tilde{\mathbf{j}}^2 = \tilde{\mathbf{j}}'^2$$
 soit $\rho^2 c^2 - \rho^2 v^2 = \rho'^2 c^2$ i.e. $\rho^2 \left(1 - \frac{v^2}{c^2} \right) = \rho'^2$ d'où $\rho' = \frac{\rho}{\gamma}$

3.2. Champ électrique

Plaçons-nous dans le référentiel \mathcal{R}' : dans \mathcal{R}' les charges sont immobiles, et nous sommes en présence d'un problème classique d'électrostatique.

Soit un point M quelconque dans le référentiel \mathcal{R}' , situé à une distance b de l'axe z' du fil infini.

3.10 — On repère le point M par ses coordonnées polaires b', θ' , z' dans le référentiel \mathcal{R}' , et b, θ , z dans \mathcal{R} (figure 38). Exprimez b et θ en fonction de b' et θ' .

La coordonnée b est orthogonale au mouvement relatif des deux référentiels galiléens : on a donc b=b'. De même, l'angle θ est défini dans le plan transverse (Oxy) par $\tan\theta=y/x$; comme les

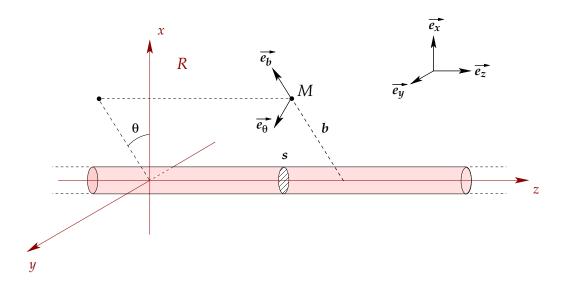


FIGURE 38 – Choix des coordonnées : on notera b la distance d'un point quelconque M au fil.

coordonnées x et y ne sont pas affectées par la transformation de Lorentz, θ ne l'est pas non plus, et $\theta = \theta'$.

3.11 — En utilisant des arguments de symétrie, montrez que le champ électrique $\mathbf{E}'(\mathbf{M})$ est nécessairement radial, et qu'il n'est fonction que de $b : \mathbf{E}'(\mathbf{M}) = E'(b) \mathbf{e_b}$.

Comme le fil est infini et que la densité de charge est uniforme, le système est invariant par translation selon O'z': E'(M) est donc indépendant de la coordonnée z'. D'autre part, le système est invariant par rotation d'un angle quelconque autour de l'axe O'z': l'intensité du champ E' ne doit donc pas dépendre de l'angle θ .

Considérons le plan de symétrie $(M, e_x, e_y) = (M, e_b, e_\theta)$. Cette symétrie laisse invariante la géométrie du système et la distribution des charges. Par conséquent, la composante E_z' de \mathbf{E}' orthogonale à ce plan est nécessairement nulle.

Il en est de même pour le plan de symétrie défini par le point M et l'axe O'z': On en déduit que la composante orthoradiale E'_{θ} est elle aussi nulle.

On en conclut que la seule composante non nulle du champ $\mathbf{E}'(\mathbf{M})$ est la composante radiale E_b' , et que l'intensité du champ \mathbf{E}' ne dépend que de la distance au fil $b: \mathbf{E}'(\mathbf{M}) = E'(b) \mathbf{e_b}$.

3.12 — En appliquant le théorème de Gauss pour un volume cylindrique bien choisi (voir fig. 39), montrez que l'expression de l'intensité du champ électrique $\mathbf{E}'(b)$ à l'extérieur du fil est :

$$\mathbf{E}'(b) = E'(b) \mathbf{e_b} = \frac{\rho' s}{2\pi\epsilon_0 b} \mathbf{e_b}$$

Appliquons le théorème de Gauss à un cylindre \mathcal{V}' de rayon b, d'axe de révolution O'z', et de longueur L', défini entre les abscisses z'(M)-L'/2 et z'(M)+L'/2. Le flux du champ \mathbf{E}' à travers la surface de ce cylindre est égal à la charge électrique totale $Q_{\mathcal{V}'}$ contenue dans le cylindre divisé par la permittivité du vide ϵ_0 :

$$\oint_{\partial \mathcal{V}'} \mathbf{E}' \cdot d\mathbf{S} = \iiint_{\mathcal{V}'} \frac{\rho'}{\epsilon_0} dV = \frac{Q_{\mathcal{V}'}}{\epsilon_0}$$

Comme E' est radial et que son intensité ne dépend que de b, constant sur la périphérie du cylindre,

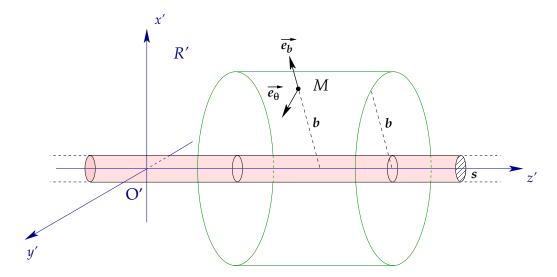


FIGURE 39 – Volume cylindrique de rayon b pour le calcul du champ électrique par le théorème de Gauss.

cette équation se simplifie :

$$\iint_{\partial \mathcal{V}'} \mathbf{E}' \cdot d\mathbf{S} = 2\pi b L' E'(b) = \frac{\rho' s L'}{\epsilon_0}$$

On en déduit:

$$E'(b) = \frac{\rho' s L'}{2\pi\epsilon_0 b L'} = \frac{\rho' s}{2\pi\epsilon_0 b}$$
 $\mathbf{E}'(b) = \frac{\rho' s}{2\pi\epsilon_0 b} \mathbf{e_b}$

On rappelle la forme générale du tenseur du champ électromagnétique $F^{\mu\nu}$:

$$\widetilde{\mathbf{F}}: F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix}$$

3.13 — Donnez explicitement l'expression du tenseur $\widetilde{\mathbf{F}}': F'^{\mu\nu}$ dans le référentiel \mathcal{R}' pour un point quelconque M situé à l'extérieur du fil chargé.

Dans \mathcal{R}' , en l'absence de courant et donc de champ magnétique, d'après ce qui précède, le tenseur $\widetilde{\mathbf{F}}'$ a pour composantes contravariantes :

$$\widetilde{\mathbf{F}}': F'^{\mu\nu} = \begin{pmatrix} 0 & -E'_x/c = -\frac{E'(b)}{c}\cos\theta & -E'_y/c = -\frac{E'(b)}{c}\sin\theta & 0 \\ E'_x/c = \frac{E'(b)}{c}\cos\theta & 0 & 0 & 0 \\ E'_y/c = \frac{E'(b)}{c}\sin\theta & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

3.14 — Rappelez comment se transforme un tenseur contravariant de rang 2 par changement de référentiel galiléen. *Soyez très attentif au choix des axes effectué dans l'énoncé.*

Lorsqu'on passe du référentiel \mathcal{R} au référentiel \mathcal{R}' , Les composantes contravariantes $F^{\mu\nu}$ du tenseur électromagnétique se transforment selon :

$$F^{\prime\mu\nu} = [\mathbf{L}]^{\mu}_{\ \alpha} [\mathbf{L}]^{\nu}_{\ \beta} F^{\alpha\beta}$$

et réciproquement,

$$F^{\mu\nu} = \left[\mathbf{L}^{-1}\right]^{\mu}_{\alpha} \left[\mathbf{L}^{-1}\right]^{\nu}_{\beta} F^{\prime\alpha\beta}$$

3.15 — En utilisant le résultat précédent, déduisez-en l'expression du tenseur électromagnétique $F^{\mu\nu}$ dans le référentiel \mathcal{R} . Identifiez avec l'expression générale du tenseur $F^{\mu\nu}$, et donnez l'expression des composantes (E_x, E_y, E_z) et (B_x, B_y, B_z) des champs \mathbf{E} et \mathbf{B} dans le référentiel \mathcal{R} .

En utilisant ce qui précède, et le fait que les matrices ${\bf L}$ et ${\bf L}^{-1}$ sont symétriques, on trouve :

$$F^{\mu\nu} = \begin{bmatrix} \mathbf{L}^{-1} \end{bmatrix}^{\mu}_{\alpha} \begin{bmatrix} \mathbf{L}^{-1} \end{bmatrix}^{\nu}_{\beta} F'^{\alpha\beta} = \begin{bmatrix} \mathbf{L}^{-1} \end{bmatrix}^{\mu}_{\alpha} F'^{\alpha\beta} \begin{bmatrix} \mathbf{L}^{-1} \end{bmatrix}^{\nu}_{\beta}$$

expression qui peut s'interpréter comme un produit matriciel (car la matrice de Lorentz est symétrique),

$$F^{\mu\nu} = \begin{pmatrix} \gamma & 0 & 0 & \beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta\gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} 0 & -\frac{E'(b)}{c}\cos\theta & -\frac{E'(b)}{c}\sin\theta & 0 \\ \frac{E'(b)}{c}\cos\theta & 0 & 0 & 0 \\ \frac{E'(b)}{c}\sin\theta & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \gamma & 0 & 0 & \beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \beta\gamma & 0 & 0 & \gamma \end{pmatrix}$$

Ce qui donne,

$$F^{\mu\nu} = \begin{pmatrix} 0 & -\gamma \frac{E'(b)}{c} \cos \theta & -\gamma \frac{E'(b)}{c} \sin \theta & 0 \\ \gamma \frac{E'(b)}{c} \cos \theta & 0 & 0 & \beta \gamma \frac{E'(b)}{c} \cos \theta \\ \gamma \frac{E'(b)}{c} \sin \theta & 0 & 0 & \beta \gamma \frac{E'(b)}{c} \sin \theta \\ 0 & -\beta \gamma \frac{E'(b)}{c} \cos \theta & -\beta \gamma \frac{E'(b)}{c} \sin \theta & 0 \end{pmatrix} = \begin{pmatrix} 0 & -E_x/c & -E_y/c & -E_z/c \\ E_x/c & 0 & -B_z & B_y \\ E_y/c & B_z & 0 & -B_x \\ E_z/c & -B_y & B_x & 0 \end{pmatrix}$$

En identifiant, on trouve,

$$E_x = \gamma E'(b) \cos \theta$$
 $E_y = \gamma E'(b) \sin \theta$ $E_z = 0$

où

$$E'(b) = \frac{\rho's}{2\pi\epsilon_0 b} = \frac{1}{\gamma} \frac{\rho s}{2\pi\epsilon_0 b}$$

Or, dans le référentiel \mathcal{R} ,

$$E_x = E(b)\cos\theta$$
 $E_y = E(b)\sin\theta$ $E_z = 0$

D'où, en identifiant,

$$E(b) = \gamma \times E'(b) = \gamma \times \frac{1}{\gamma} \frac{\rho s}{2\pi\epsilon_0 b} = \frac{\rho s}{2\pi\epsilon_0 b}$$

Par ailleurs, on trouve un champ magnétique non-nul dans le référentiel \mathcal{R} , de composantes :

$$B_x = -\beta \gamma \frac{E'(b)}{c} \sin \theta = -B(b) \sin \theta$$
 $B_y = +\beta \gamma \frac{E'(b)}{c} \cos \theta = +B(b) \cos \theta$ $B_z = 0$

où, en identifiant, on obtient la norme du champ magnétique B(b):

$$B(b) = \frac{1}{\gamma} \frac{\rho s}{2\pi\epsilon_0 b} \times \gamma \frac{v}{c^2} = \frac{\rho v s}{2\pi b} \frac{1}{\epsilon_0 c^2} = \frac{\mu_0 I}{2\pi b} \qquad \text{et par conséquent} \qquad \mathbf{B}(b) = \frac{\mu_0 I}{2\pi b} \mathbf{e}_{\theta}$$

3.16 — En vous plaçant dans le référentiel \mathcal{R} et en utilisant de nouveau le théorème de Gauss, retrouvez l'expression du champ $\mathbf{E}(\mathbf{M})$ dans le référentiel \mathcal{R} . Commentez.

En raisonnant comme précédemment, on peut définir dans le référentiel $\mathcal R$ un volume cylindrique $\mathcal V$ de rayon b et de longueur L dans $\mathcal R$, défini entre les abscisses z(M)-L/2 et z(M)+L/2. Le flux du champ $\mathbf E$ à travers la surface de ce cylindre est égal à la charge électrique totale $Q_{\mathcal V}$ contenue dans le cylindre divisé par la permittivité du vide ϵ_0 :

$$\bigoplus_{\partial \mathcal{V}} \mathbf{E} \cdot d\mathbf{S} = \iiint_{\mathcal{V}} \frac{\rho}{\epsilon_0} \, dV = \frac{Q_{\mathcal{V}}}{\epsilon_0}$$

Comme \mathbf{E} est radial (même raisonnement, la géométrie est identique) et que son intensité ne dépend que de b, constant sur la périphérie du cylindre, cette équation se simplifie :

$$\iint_{\partial \mathcal{V}} \mathbf{E} \cdot d\mathbf{S} = 2\pi b L E(b) = \frac{\rho s L}{\epsilon_0}$$

On en déduit :

$$E(b) = \frac{\rho s L}{2\pi\epsilon_0 b L} = \frac{\rho s}{2\pi\epsilon_0 b} \qquad \mathbf{E}(b) = \frac{\rho s}{2\pi\epsilon_0 b} \, \mathbf{e_b}$$

On retrouve naturellement le résultat obtenu en transformant les composantes du tenseur électromagnétique.

3.3. Champ magnétique

On considère maintenant le système dans le référentiel \mathcal{R} . Dans ce référentiel, le fil est parcouru par un courant I.

3.17 — Montrez que, par symétrie, l'intensité du champ magnétique B en un point M quelconque (à l'extérieur du fil) n'est fonction que de b, et que \mathbf{B} est nécessairement orthoradial : $\mathbf{B} = B(b)$ \mathbf{e}_{θ} .

Comme le fil est infini et que la densité de courant est uniforme, le système est invariant par translation selon Oz: B(M) est donc indépendant de la coordonnée z. D'autre part, le système est invariant par rotation d'un angle quelconque autour de l'axe Oz: l'intensité du champ B ne doit donc pas dépendre de l'angle θ . L'intensité du champ magnétique ne dépend donc que de la distance au fil b.

Considérons le plan d'anti-symétrie $(M, \mathbf{e_x}, \mathbf{e_y}) = (M, \mathbf{e_b}, \mathbf{e_{\theta}})$. Cette symétrie laisse invariante la géométrie du système et inverse la densité de courant : $\mathbf{j} \to -\mathbf{j}$. Or, le champ magnétique \mathbf{B} est un tenseur anti-symétrique de rang 2, sa composante orthogonale au plan d'anti-symétrie est donc nulle, et il est contenu dans ce plan. Le champ \mathbf{B} est donc orthoradial, *i.e.* selon $\mathbf{e_{\theta}}$. On a donc : $\mathbf{B}(M) = B(b) \mathbf{e_{\theta}}$.

3.18 — En utilisant le théorème d'Ampère sur un contour astucieusement choisi (fig 40), montrez que le champ magnétique vaut :

$$\mathbf{B}(b) = B(b) \mathbf{e}_{\theta}$$
 avec $B(b) = \frac{\mu_0 j s}{2\pi b} = \frac{\mu_0 I}{2\pi b}$

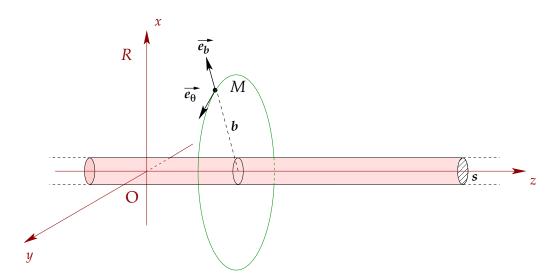


FIGURE 40 – Contour circulaire de rayon b pour le calcul du champ magnétique au point M par le théorème d'Ampère.

Calculons la circulation du champ ${\bf B}$ sur un contour circulaire $\partial {\cal D}$ défini dans un plan $(M, {\bf e_x}, {\bf e_y}) = (M, {\bf e_b}, {\bf e_{\theta}})$ et centré sur le fil. Tout le long du contour, l'intensité du champ magnétique est constante car elle ne dépend que de b. On a donc :

$$\oint_{\partial \mathcal{D}} \mathbf{B} \cdot \mathbf{e}_{\theta} \, \mathrm{d}\ell = 2\pi b B(b)$$

Cette circulation est égale au flux du rotationnel du champ \mathbf{B} à travers le contour \mathcal{D} ,

$$\oint_{\partial \mathcal{D}} \mathbf{B} \cdot \mathbf{e}_{\theta} \, d\ell = \iint_{\mathcal{D}} (\nabla \times \mathbf{B}) \cdot d\mathbf{S} = \iint_{\mathcal{D}} \mu_0 \, \mathbf{j} \cdot d\mathbf{S} = \mu_0 I$$

D'où on déduit :

$$2\pi b B(b) = \mu_0 I$$
 soit $B(b) = \frac{\mu_0 I}{2\pi b}$ et $\mathbf{B}(b) = \frac{\mu_0 I}{2\pi b} \mathbf{e}_{\theta}$

3.19 — Montrez que ce résultat est cohérent avec les composantes (B_x, B_y, B_z) que vous avez obtenues précédemment par transformation du tenseur $F^{\mu\nu}$.

Commentez : en quoi le champ magnétique est-il un effet purement relativiste?

On retrouve la même expression pour le champ magnétique dans le référentiel \mathcal{R} . Le champ magnétique semble dépendre de l'observateur et du référentiel d'étude du système : dans un référentiel où les charges sont en mouvement, B est non-nul; dans le référentiel qui se déplace avec les charges, le champ B s'annule. On peut ainsi interpréter B comme une manifestation relativiste lié au choix du référentiel d'observation du système.

4. Effet Doppler

En utilisant le quadrivecteur énergie-impulsion du photon, retrouvez la loi de l'effet Doppler relativiste.

Dans un référentiel \mathcal{R} , le quadrivecteur énergie-impulsion d'un photon peut s'écrire :

$$\widetilde{\mathbf{p}} = \hbar \widetilde{\mathbf{k}}$$
 $p^{\mu} = \hbar k^{\mu} = \begin{pmatrix} E/c \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} h\nu/c \\ \hbar \mathbf{k} \end{pmatrix} = \begin{pmatrix} h\nu/c \\ \hbar k_x \\ \hbar k_y \\ \hbar k_z \end{pmatrix}$ avec $\widetilde{\mathbf{p}}^2 = 0$

Ecrivons ses composantes p'^{μ} dans un autre référentiel inertiel \mathcal{R}' , en translation uniforme par rapport à \mathcal{R} dans la direction de propagation du photon : $\mathbf{v} = \mathbf{v}(\mathcal{R}'/\mathcal{R}) = v \, \mathbf{e}_x$ (v algébrique) et $\mathbf{k} = k \, \mathbf{e}_x$. En utilisant la transformation de Lorentz, on obtient :

$$\begin{pmatrix} h\nu'/c \\ \hbar k_x' \\ \hbar k_y' \\ \hbar k_z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h\nu/c \\ \hbar k \\ 0 \\ 0 \end{pmatrix}$$

Ce qui donne:

$$\begin{array}{lcl} \frac{h\nu'}{c} & = & \gamma\,\frac{h\nu}{c} - \beta\gamma\hbar k \\ \hbar k_x' & = & \hbar k' = -\beta\gamma\,\frac{h\nu}{c} + \gamma\hbar k \\ \hbar k_y' & = & 0 \\ \hbar k_z' & = & 0 \end{array}$$

En utilisant $k=2\pi/\lambda=2\pi\nu/c$, on déduit :

$$\nu' = \gamma \nu - \beta \gamma \nu$$
 i.e. $\nu' = \nu \times \gamma (1 - \beta) = \nu \times \sqrt{\frac{1 - \beta}{1 + \beta}}$.

et,

$$\lambda' = \lambda \times \sqrt{\frac{1+\beta}{1-\beta}}.$$

On retrouve ainsi l'équation de l'effet Doppler relativiste.

En supposant que le vecteur d'onde du photon possède une direction quelconque par rapport à la vitesse relative $\mathbf{v} = \mathbf{v}(\mathcal{R}'/\mathcal{R})$, on peut de même retrouver les équations de l'aberration, de l'effet phare, etc..

5. Distribution angulaire de la lumière émise par une source en mouvement (effet phare)

Une source de lumière O' émet des photons de manière isotrope dans son référentiel \mathcal{R}' . Cette source lumineuse est animée d'une vitesse $\mathbf{v}=v\,\mathbf{e}_x$ par rapport au référentiel \mathcal{R} . Pour illustrer, on pourra prendre v=c/2.

5.1 — Exprimez les composantes u'_x , u'_y et u'_z de la vitesse \mathbf{u}' d'un rayon lumineux dans le référentiel \mathcal{R}' en fonction des angles θ' et ϕ' , où θ' est l'angle zénithal entre la direction du mouvement relatif (par exemple l'axe O'x') et la direction du rayon lumineux, et ϕ' est l'angle azimutal dans le plan y'O'z' (coordonnées sphériques, mais avec O'x' comme axe de référence).

Dans le référentiel \mathcal{R}' de la source (c'est son référentiel propre), un rayon lumineux émis par la source se déplace (dans le vide) à la vitesse $\mathbf{u}':(u_x',u_y',u_z')$ dont la norme est forcément : $|\mathbf{u}|=c$. Les composantes du vecteur vitesse \mathbf{u} d'un photon émis selon la direction (θ',ϕ') sont :

$$u'_x = c\cos\theta'$$
 $u'_y = c\sin\theta'\cos\phi'$ $u'_z = c\sin\theta'\sin\phi'$

où ϕ' est l'angle azimutal autour de l'axe Ox' = Ox (cf. fig. 41).

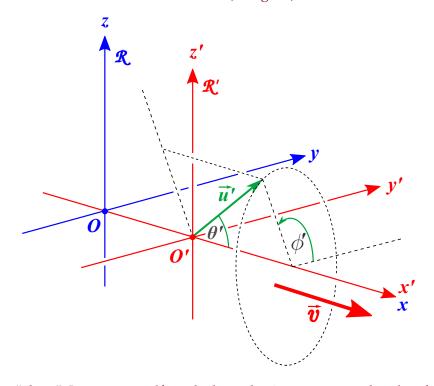


FIGURE 41 – Effet "phare". La source, en O', se déplace à la vitesse $\mathbf{v}=v\,\mathbf{e}_x$ dans le référentiel $\mathcal{R}.\,\mathbf{u}'$ est le vecteur vitesse d'un rayon lumineux émis par la source mesuré dans son propre référentiel $\mathcal{R}'.$ On adopte ici la convention suivante pour les angles : θ' est l'angle entre l'axe O'x' et \mathbf{u}' , tandis que ϕ' est l'angle azimutal dans le plan y'O'z' par rapport à l'axe O'y'. On adopte des conventions équivalentes dans le référentiel \mathcal{R} pour les angles (θ,ϕ) définissant la direction du vecteur vitesse \mathbf{u} du même rayon lumineux mais cette fois dans $\mathcal{R}.$

5.2 — En utilisant la loi relativiste de composition des vitesses, établissez les composantes u_x , u_y et u_z du vecteur vitesse \mathbf{u} du même rayon lumineux, mais cette fois dans le référentiel \mathcal{R} , où la source se déplace à la vitesse $\mathbf{v} = v\,\mathbf{e}_x$.

Dans le référentiel \mathcal{R} , avec $\mathbf{v} = \mathbf{v}(\mathcal{R}'/\mathcal{R}) = v \, \mathbf{e}_x$, les composantes de la vitesse deviennent :

$$u_x = \frac{u_x' + v}{1 + \frac{vu_x'}{c^2}} = \frac{c\cos\theta' + v}{1 + \frac{vc\cos\theta'}{c^2}}$$

$$u_y = \frac{1}{\gamma} \frac{u_y'}{1 + \frac{vu_x'}{c^2}} = \frac{1}{\gamma} \times \frac{c\sin\theta'\cos\phi'}{1 + \frac{vc\cos\theta'}{c^2}}$$

$$u_z = \frac{1}{\gamma} \frac{u_z'}{1 + \frac{vu_x'}{c^2}} = \frac{1}{\gamma} \times \frac{c\sin\theta'\sin\phi'}{1 + \frac{vc\cos\theta'}{c^2}}$$

5.3 — Vérifiez que la norme du vecteur vitesse u dans \mathcal{R} vaut également c, comme attendu d'après le second postulat de la relativité restreinte.

Ayant établi les composantes u_x , u_y et u_z de la vitesse d'un rayon dans le référentiel \mathcal{R} , on peut vérifier que la norme du vecteur vitesse $\mathbf{u} = (u_x, u_y, u_z)$ vaut bien c:

$$\begin{split} \mathbf{u}^2 &= u_x^2 + u_y^2 + u_z^2 = \frac{\left(c\cos\theta' + v\right)^2 + \frac{c^2}{\gamma^2}\sin^2\theta'\cos^2\phi' + \frac{c^2}{\gamma^2}\sin^2\theta'\sin^2\phi'}{\left[1 + \frac{v}{c}\cos\theta'\right]^2} \\ \mathbf{u}^2 &= \frac{c^2\cos^2\theta' + v^2 + 2vc\cos\theta' + \frac{c^2}{\gamma^2}\sin^2\theta'}{\left[1 + \frac{v}{c}\cos\theta'\right]^2} = \frac{c^2\cos^2\theta' + \frac{c^2}{\gamma^2}(1 - \cos^2\theta') + v^2 + 2vc\cos\theta'}{\left[1 + \frac{v}{c}\cos\theta'\right]^2} \\ \mathbf{u}^2 &= \frac{c^2\cos^2\theta' \left[1 - \frac{1}{\gamma^2}\right] + \frac{c^2}{\gamma^2} + v^2 + 2vc\cos\theta'}{\left[1 + \frac{v}{c}\cos\theta'\right]^2} = \frac{v^2\cos^2\theta' + (1 - \beta^2)c^2 + v^2 + 2vc\cos\theta'}{\left[1 + \frac{v}{c}\cos\theta'\right]^2} \\ \mathbf{u}^2 &= \frac{c^2 + v^2\cos^2\theta' + 2vc\cos\theta'}{\left[1 + \frac{v}{c}\cos\theta'\right]^2} = c^2 \times \frac{1 + 2\frac{v}{c}\cos\theta' + \frac{v^2}{c^2}\cos^2\theta'}{\left[1 + \frac{v}{c}\cos\theta'\right]^2} = c^2 \qquad \text{d'où} \quad |\mathbf{u}| = c \end{split}$$

où on a utilisé les relations $1/\gamma^2 = 1 - \beta^2$, $\beta^2 = 1 - 1/\gamma^2$ et $\beta^2 c^2 = v^2$.

5.4 — Exprimez les coordonnées du vecteur vitesse u dans le référentiel \mathcal{R} , en fonction des angles θ et ϕ , où θ est l'angle zénithal par rapport à la direction de la vitesse relative, et ϕ l'angle azimutal dans le plan orthogonal, définis de la même manière que précédement (coordonnées sphériques avec l'axe Ox comme axe de référence).

Comme nous avons vérifié que la norme de la vitesse du rayon lumineux vaut aussi $|\mathbf{u}|=c$ dans le référentiel \mathcal{R} , on peut écrire les composantes (u_x,u_y,u_z) en fonction des angles θ et ϕ selon la même convention que précédemment (cf. fig. 41):

$$u_x = c\cos\theta$$
 $u_y = c\sin\theta\cos\phi$ $u_z = c\sin\theta\sin\phi$.

5.5 — Exprimez les angles θ et ϕ qui définissent dans \mathcal{R} la direction du rayon lumineux en fonction de θ' et ϕ' .

De manière immédiate, $u_z/u_y=u_z'/u_y'$ et par conséquent $\phi=\phi'$: la direction azimutale autour de Ox est inchangée. Du fait de la symétrie de rotation autour de Ox, on pouvait s'attendre à un tel résultat.

Pour l'angle zénithal θ , on a $u_x = c \cos \theta$, et par conséquent,

$$\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'}.$$

On peut établir la relation réciproque entre $\cos\theta$ et $\cos\theta'$ en inversant cette expression, ou encore en utilisant l'astuce habituelle de l'échange des référentiels : il suffit d'échanger les symboles primés et non-primés, et de changer β en $-\beta$,

$$\cos \theta' = \frac{\cos \theta - \beta}{1 - \beta \cos \theta}.$$

5.6 — Montrez que pour $0 \le \beta < 1$ (source se déplaçant vers l'avant), on a nécessairement $\theta < \theta'$. Calculez explicitement θ pour $\beta = 1/2$ et $\theta' = \pi/2$. Commentez.

Pour juger de l'effet du changement de référentiel sur la distribution angulaire des rayons émis par la source en mouvement, on peut utiliser le fait que $\cos^2\theta'\leqslant 1$, et comme $0\leqslant \beta<1$, on a nécessairement :

$$\beta \cos^2 \theta' \leq \beta$$
 soit $\beta \cos^2 \theta' + \cos \theta' \leq \beta + \cos \theta'$ i.e. $\cos \theta' (1 + \beta \cos \theta') \leq \beta + \cos \theta'$

D'où on déduit :

$$\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'} \geqslant \cos \theta'$$
 et par conséquent $\theta \leqslant \theta'$.

Et l'inégalité est stricte, sauf si $\beta=0$ ou si $\theta'\in\{0,\pi\}$. Dans le référentiel \mathcal{R} où la source est en mouvement, les rayons sont davantage concentrés vers l'avant.

En particulier, si $\beta = 1/2$,

$$\cos \theta = \frac{1 + 2\cos \theta'}{2 + \cos \theta'} > \cos \theta'$$

Par exemple, pour $\theta' = \pi/2$, $\theta = \pi/3$: l'ensemble des photons émis dans le demi-espace avant dans le référentiel \mathcal{R}' de la source est émis dans un cône de 120^o vers l'avant dans \mathcal{R} (fig. 42).

L'effet observé dans \mathcal{R} est une focalisation des rayons émis par la source dans la direction de son mouvement : on appelle cet effet relativiste l'**effet projecteur** ou encore **l'effet phare**.

Si par exemple, la source lumineuse est une étoile, en mouvement par rapport à un observateur solidaire du référentiel \mathcal{R} , l'observateur mesurera l'étoile comme apparemment plus brillante si elle se rapproche de lui (dans les conventions de l'exercice, pour des temps t < 0, si on suppose que la source O' est en O à t = 0), et il la mesurera comme moins brillante lorsqu'elle s'éloigne de lui (ici, pour des t > 0).

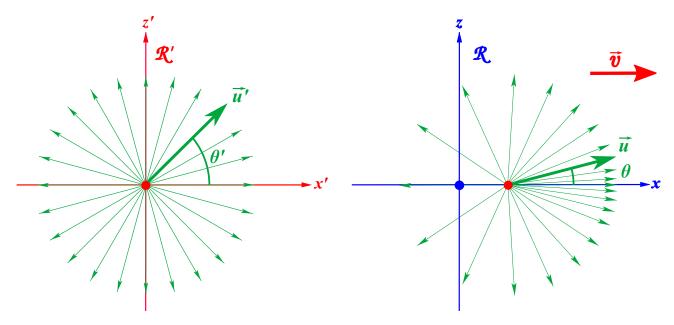


FIGURE 42 – Effet "phare". Dans le référentiel \mathcal{R}' de la source, les photons sont émis selon une distribution angulaire isotrope. Dans le référentiel \mathcal{R} , les rayons sont concentrés vers l'avant (effet projecteur ou effet phare) et le flux de photons émis par la source en mouvement est plus intense vers l'avant que vers l'arrière.

5.7 — Bonus : étudiez la distribution angulaire des photons dans \mathcal{R} autour de la direction Ox (direction du mouvement relatif).

On peut établir explicitement la distribution angulaire des rayons lumineux émis par la source dans les deux référentiels. Supposons que la source émette chaque seconde N photons sur l'angle solide total de 4π . Si on suppose que l'émission est isotrope dans le référentiel \mathcal{R}' , cela signifie que le nombre de photons émis chaque seconde dans un angle solide élémentaire $\mathrm{d}^2\Omega'$ s'écrit :

$$d^{2}N = \rho'(\theta', \phi')d^{2}\Omega' = \rho'(\theta', \phi')\sin\theta'd\theta'd\phi'$$

où $d^2\Omega' = \sin\theta' d\theta' d\phi'$ est l'angle solide élémentaire exprimé dans les coordonnées angulaires choisies (fig. 41), et $\rho'(\theta',\phi')$ la fonction de densité des rayons émis. Comme la source est isotrope, cette fonction densité est constante dans \mathcal{R}' , et vaut :

$$\rho'(\theta', \phi') = \frac{N}{4\pi}$$

de telle sorte que l'intégrale sur toutes les directions fasse bien N:

$$\iint d^2 N = \int_{\Omega'=4\pi} \rho'(\theta', \phi') d^2 \Omega' = \int_{\theta'=0}^{\theta'=\pi} \int_{\phi'=0}^{\phi'=2\pi} \rho'(\theta', \phi') \sin \theta' d\theta' d\phi' = \frac{N}{4\pi} \times 2\pi \left[-\cos \theta' \right]_{\theta'=0}^{\theta'=\pi} = N$$

On peut exprimer la fonction de densité des rayons $\rho(\theta, \phi)$, cette fois dans le référentiel \mathcal{R} ,

$$d^{2}N = \rho(\theta, \phi)d^{2}\Omega = \rho(\theta, \phi)\sin\theta d\theta d\phi$$

Les d^2N photons émis dans l'angle solide $d^2\Omega'$ dans le référentiel \mathcal{R}' , sont émis dans l'angle solide correspondant $d^2\Omega$ dans \mathcal{R} , et on aura :

$$d^{2}N = \rho(\theta, \phi) \sin \theta d\theta d\phi = \rho'(\theta', \phi') \sin \theta' d\theta' d\phi'$$

En différenciant l'équation qui donne $\cos \theta'$ en fonction de $\cos \theta$, on trouve de plus :

$$d\left[\cos\theta'\right] = d\left[\frac{\cos\theta - \beta}{1 - \beta\cos\theta}\right] \qquad \text{soit} \qquad -\sin\theta'd\theta' = -\left[\frac{1 - \beta^2}{(1 - \beta\cos\theta)^2}\right]\sin\theta d\theta.$$

Ce qui, en substituant dans l'équation donnant d^2N , et en simplifiant, permet d'obtenir la fonction densité des rayons dans le référentiel \mathcal{R} :

$$\rho(\theta,\phi) = \frac{1-\beta^2}{(1-\beta\cos\theta)^2}\rho'(\theta',\phi') = \frac{1}{\gamma^2}\frac{1}{(1-\beta\cos\theta)^2} \times \frac{N}{4\pi}.$$

Cette fonction est manifestement décroissante, ce qui signifie que les rayons sont concentrés vers l'avant (petites valeurs de θ). En traçant cette fonction pour $\beta=1/2$, on obtient le graphe de la figure 43.

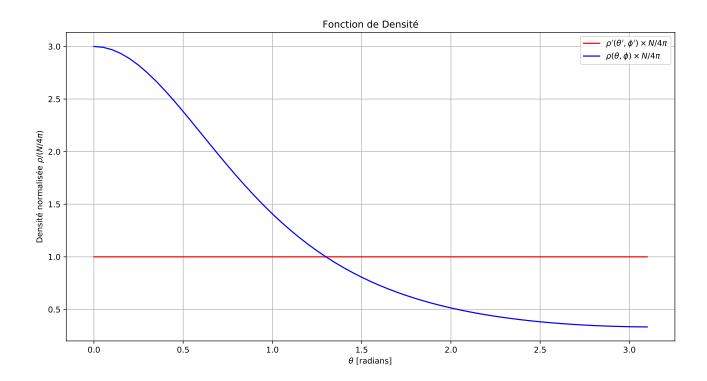


FIGURE 43 – Effet "phare". Fonction densité angulaire des rayons, dans le référentiel \mathcal{R}' de la source (rouge), et dans le référentiel \mathcal{R} où la source est animée d'une vitesse $\mathbf{v} = v \, \mathbf{e}_x$ (bleu). Dans le référentiel \mathcal{R} , la densité des rayons est plus grande pour les petites valeurs de l'angle θ et décroît quand θ croît, ce qui correspond bien à une concentration des rayons vers l'avant dans le référentiel \mathcal{R} .

6. Aberration des étoiles

L'aberration des étoiles est un phénomène découvert par l'astronome James Bradley en 1725 en étudiant l'évolution de la position de l'étoile γ Draconis : lorsqu'on observe une même étoile tout au long de l'année, celle-ci semble parcourir une petite ellipse plus ou moins aplatie selon la latitude de l'étoile, et ce, en une année. L'angle d'où provient la lumière semble varier avec la vitesse relative de l'observateur, à la manière de la pluie pour un piéton en mouvement.

6.1 — Considérons une étoile lointaine située dans la direction du pôle de l'écliptique (axe Oz de l'orbite terrestre autour du Soleil). Un astronome sur Terre observe régulièrement cette étoile. On appelle v la vitesse de l'astronome par rapport au référentiel de Copernic. Calculez l'angle apparent θ' que fait la direction de l'étoile avec le pôle de l'écliptique 4 pour l'astronome. Faites l'application numérique ($v \simeq 30 \, \mathrm{km.s^{-1}}$).

6.2 — Généralisez le résultat précédent pour une étoile inclinée avec un angle θ par rapport au pôle de l'écliptique (angle zénithal). Décrivez la trajectoire apparente des étoiles en fonction de θ .

Traitons directement le cas général d'un rayon lumineux incliné d'un angle θ par rapport à la direction Oz, axe de l'écliptique, dans le référentiel \mathcal{R}_0 du système solaire (le référentiel de Copernic, supposé galiléen).

^{4.} L'écliptique est la trajectoire apparente du Soleil sur la sphère céleste.

Considérons le cas simple d'un observateur en mouvement à la vitesse \mathbf{v} parallèle à Ox. Dans le référentiel \mathcal{R}_0 , les composantes de \mathbf{u} sont :

$$u_x = -c\sin\theta$$
 $u_y = 0$ $u_z = -c\cos\theta$

Dans le référentiel \mathcal{R}' la composition des vitesses donne :

$$u'_{x} = \frac{u_{x} - v}{1 - \frac{vu_{x}}{c^{2}}} = \frac{-c\sin\theta - v}{1 + \frac{vc\sin\theta}{c^{2}}} = -\frac{c\sin\theta + v}{1 + \frac{v\sin\theta}{c}}$$

$$u'_{y} = 0$$

$$u'_{z} = \frac{u_{z}}{\gamma(v)\left(1 - \frac{vu_{x}}{c^{2}}\right)} = \frac{-c\cos\theta}{\gamma(v)\left(1 + \frac{vc\sin\theta}{c^{2}}\right)} = -\frac{c\cos\theta}{\gamma(v)\left(1 + \frac{v\sin\theta}{c}\right)}$$

On en déduit l'angle apparent θ' (ou plutôt sa tangente) sous lequel l'étoile apparaît dans le référentiel \mathcal{R}' :

$$\tan \theta' = \frac{u_x'}{u_z'} = \gamma(v) \frac{\sin \theta + v/c}{\cos \theta}$$

Dans le cas particulier où $\theta = 0$ (étoile au zénith écliptique),

$$\theta' \simeq \tan \theta' = \gamma(v) \frac{v}{c}$$

Pour une vitesse relative de $30\,\mathrm{km/s}$ (Terre), on trouve $\theta' \simeq 10^{-4} \simeq 20\,\mathrm{arcsec}$ pour une étoile au pôle de l'écliptique. Au cours d'une année, une étoile au pôle écliptique décrira un cercle apparent de $20\,\mathrm{arcsec}$ de rayon. Pour une étoile plus proche de l'écliptique, l'effet sera plus faible selon la direction Oz mais de même amplitude dans la direction orthogonale (faites un dessin pour vous en convaincre), et décrira donc des ellipses, d'autant plus aplaties que l'étoile est proche de l'écliptique. Pour une étoile située sur l'écliptique, On aura (avec \mathbf{v} selon Ox):

$$\theta=\pi/2 \qquad u_x'=c \qquad u_y'=0 \qquad u_z'=0$$

L'effet selon Oz sera nul, et l'étoile oscillera au cours de l'année sur un segment de droite de 40 arcsec de longueur, parallèle à l'écliptique.

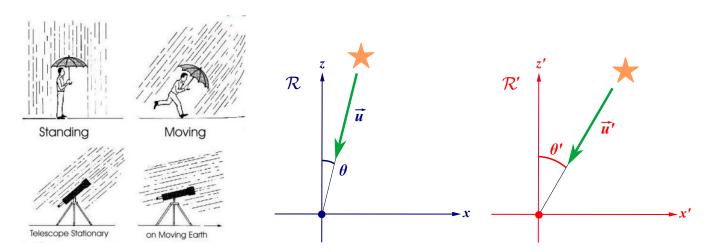


FIGURE 44 – Aberration des étoiles. À gauche, étoile vue dans le référentiel du système solaire; l'angle θ est compté à partir du pôle de l'orbite de la Terre autour du soleil (pôle de l'écliptique). À droite, même situation vue par un observateur à la surface de la Terre.

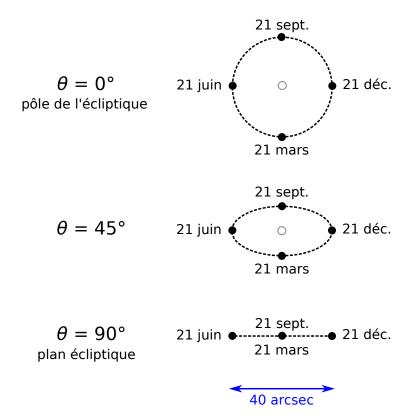


FIGURE 45 – Effet de l'aberration : du fait de la rotation de la Terre autour du Soleil, la position apparente d'une étoile parcourt une petite ellipse au cours de l'année. Au pôle de l'écliptique, la trajectoire est circulaire, tandis que pour une étoile dans le plan écliptique, la trajectoire se réduit à un segment de droite.

FIGURE 46 – Secteur zénithal (télescope pointant au zénith, permettant la mesure de la distance zénithale des étoiles). Conçu pour James Bradley, il est installé à l'observatoire de Greenwich. C'est avec cet instrument que J. Bradley découvrit l'aberration de la lumière et la nutation de l'axe terrestre (photos L. Le Guillou).

7. Physique des tachyons

There was a young lady named Bright Whose speed was far faster than light She went out one day In a relative way And returned the previous night.

- Reginald Buller, Punch (1923)

Le tachyon (baptisé ainsi par Gerald Feinberg en 1957, de $\tau \alpha \chi v \varsigma$ (tachus), "rapide", "prompt" en grec) est une particule hypothétique dont la vitesse u serait supérieure à c. En se basant uniquement sur cette définition (particule de vitesse u telle que u>c), on peut tenter de décrire les propriétés d'une telle particule dans le cadre de la relativité restreinte.

7.1 — Sur un diagramme d'espace-temps (Minkowski ou Loedel, selon votre préférence), indiquez les axes x et ct du référentiel \mathcal{R} . Indiquez aussi le cône de lumière passé et futur du pointévénement choisi comme origine O de coordonnées (t=0, x=0) dans \mathcal{R} . (Par souci de clarté, consacrez une pleine page à ce diagramme qui sera complété au fur et à mesure des questions suivantes).

FIGURE 47 – Tachyon en peluche, The Particle Zoo.

Voir figures 48 et 49.

7.2 — Sur le même diagramme, dessinez :

- (i) la ligne d'univers (i.e. la trajectoire dans l'espace-temps) d'un objet immobile placé à une abscisse $x = x_0 < 0$;
- (ii) la ligne d'univers d'un objet se déplaçant à la vitesse constante $\mathbf{w} = w \mathbf{e}_x$ avec 0 < w < c;
- (iii) la ligne d'univers d'un photon émis vers l'avant (dans la direction des x > 0) au point événement $A: (t_A, x_A)$ avec $t_A > 0$ et $x_A > 0$.

Voir figures 48 et 49.

7.3 — Dans le référentiel \mathcal{R} , un tachyon est émis en $A:(t=t_A,x=x_A)$, et reçu un peu plus tard en $B:(t=t_B,x=x_B)$, avec $t_B>t_A$. Dessinez sa ligne d'univers (attention à la pente sur votre dessin! souvenez-vous que la vitesse u du tachyon est supérieure à c!). Indiquez les projections des événements A et B sur les axes d'espace et de temps de votre diagramme, et les coordonnées t_A,t_B,x_A et x_B sur votre schéma.

Voir figures 48 et 49.

7.4 — Déterminez le signe de l'expression $\Delta s^2 = \widetilde{\mathbf{A}}\widetilde{\mathbf{B}}^2 = c^2(t_B - t_A)^2 - (\mathbf{r}_B - \mathbf{r}_A)^2$. Quelle est la nature de l'intervalle d'espace-temps $\widetilde{\mathbf{A}}\widetilde{\mathbf{B}}$?

Posons:

$$\widetilde{\mathbf{AB}}: \left(\begin{array}{c} c\Delta t = c(t_B - t_A) \\ \Delta \mathbf{r} = \mathbf{r}_B - \mathbf{r}_A \end{array} \right)$$

Dans le référentiel \mathcal{R} , le tachyon se déplace à la vitesse u > c. On a donc

$$\widetilde{AB}^2 = c^2 (\Delta t)^2 - (\Delta r)^2 = (\Delta t)^2 (c^2 - u^2) < 0$$
 car $u > c$

L'intervalle d'espace-temps \widetilde{AB} est par conséquent de **genre espace** (pas de lien causal possible entre les événements A et B).

7.5 — Considérons un événement quelconque M repéré dans le référentiel inertiel \mathcal{R} par $\tilde{\mathbf{r}}: r^{\mu} = (ct, x, y, z) = (ct, \mathbf{r})$, et par $\tilde{\mathbf{r}}': r'^{\mu} = (ct', x', y', z') = (ct', \mathbf{r}')$ dans un second référentiel \mathcal{R}' , où \mathcal{R}' est en translation uniforme par rapport à \mathcal{R} avec $\mathbf{v} = \mathbf{v}(\mathcal{R}'/\mathcal{R}) = v \, \mathbf{e}_x$, et v < c. Rappelez les équations de la transformation de Lorentz entre les référentiels inertiels \mathcal{R} et \mathcal{R}' .

La transformation de Lorentz s'écrit dans ce cas :

$$\begin{cases} t' &= \frac{t - vx/c^2}{\sqrt{1 - \frac{v^2}{c^2}}} \\ x' &= \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}} \end{cases} \text{ i.e. } \begin{cases} ct' &= \gamma \left(ct - \beta x \right) \\ x' &= \gamma \left(x - \beta ct \right) \\ y' &= y \\ z' &= z \end{cases} \text{ et réciproquement } \begin{cases} ct &= \gamma \left(ct' + \beta x' \right) \\ x &= \gamma \left(x' + \beta ct' \right) \\ y &= y' \\ z &= z' \end{cases}$$

où on pose :
$$\beta = \frac{v}{c}$$
 ou $\vec{\beta} = \frac{\vec{v}}{c} = \frac{\mathbf{v}}{c}$ et $\gamma = \gamma(\mathbf{v}) = \left(1 - \beta^2\right)^{-1/2} = \frac{1}{\sqrt{1 - \frac{\mathbf{v}^2}{c^2}}}$.

On peut mettre ces équations sous une forme matricielle :

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \qquad \text{et} \qquad \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma & +\beta\gamma & 0 & 0 \\ +\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix}$$

7.6 — Montrez que l'on peut toujours trouver un référentiel galiléen \mathcal{R}' avec une vitesse relative $v = v(\mathcal{R}'/\mathcal{R})$, avec v < c telle que $t_B' < t_A'$, **c'est à dire un référentiel galiléen** \mathcal{R}' **dans lequel l'ordre des événements** A **et** B **est inversé**. Indiquez la condition sur v pour que tel soit le cas. Dans ce référentiel \mathcal{R}' , la réception du tachyon (événement B) se produit **avant** l'émission du même tachyon (événement A). Sur votre schéma, dessinez les axes ct' et x' de ce référentiel \mathcal{R}' , ainsi que les projections des événements A et B sur ces axes, afin de faire apparaître qu'effectivement, dans ce référentiel \mathcal{R}' , on a $t_B' < t_A'$.

Écrivons la transformation de Lorentz des coordonnées $(c\Delta t, \Delta \mathbf{r})$ du quadrivecteur $\mathbf{A}\mathbf{B}$. En particulier, la coordonnée temporelle dans le référentiel \mathcal{R}' s'écrit :

$$t'_B - t'_A = \Delta t' = \gamma(v) \left(\Delta t - \frac{v}{c^2} \Delta x \right) = \gamma(v) \Delta t \left(1 - \frac{uv}{c^2} \right)$$

Si $uv/c^2 < 1$, $\Delta t'$ est du même signe que Δt ; par contre, si $uv/c^2 > 1$, c'est à dire si v/c > c/u (possible car c/u < 1), $\Delta t'$ sera du signe opposé de celui Δt . Autrement dit, lorsqu'on se place dans un référentiel galiléen \mathcal{R}' en translation uniforme à la vitesse $v > c^2/u$, l'ordre temporel des événements A et B est inversé dans ce référentiel.

Voir figures 48 et 49.

7.7 — Qu'en concluez-vous à propos des tachyons et du principe de causalité? Proposez une interprétation possible de la succession des événements A et B dans le référentiel \mathcal{R}' .

En se plaçant dans un référentiel galiléen \mathcal{R}' tel que $v(\mathcal{R}'/\mathcal{R}) = v > c^2/u$ (avec toutefois v < c), on observe une inversion de l'ordre des événements A (émission du tachyon) et B (réception du tachyon). C'est à priori incompatible avec le principe de causalité. Un moyen de s'en sortir toutefois, est de décrire cette succession d'événements vus dans \mathcal{R}' comme l'émission d'un anti-tachyon en B, suivi de sa réception en A. Par contre, pour conserver la compatibilité avec le principe de causalité, il est impératif que le tachyon (ou l'anti-tachyon) ne transporte aucune information.

7.8 — On s'intéresse maintenant à la dynamique des tachyons. Écrivez l'énergie d'un tachyon de vitesse u>c en fonction de sa masse au repos m et de sa vitesse u. Dans l'expression que vous obtenez, le facteur $\gamma(u)$ est imaginaire pour un tachyon; pour obtenir une énergie qui soit un nombre réel, on peut faire l'hypothèse que la masse m au repos du tachyon est aussi un nombre imaginaire : m=iM avec M un nombre réel. Ecrivez l'énergie E(u) du tachyon sous cette hypothèse.

L'énergie d'un tachyon de vitesse *u* s'écrit :

$$E(u) = \gamma(u)mc^2 = \frac{mc^2}{\sqrt{1 - \frac{u^2}{c^2}}}$$

Comme u>c, le dénominateur est imaginaire : on peut encore écrire l'énergie sous la forme :

$$E(u) = \frac{mc^2}{i\sqrt{\frac{u^2}{c^2} - 1}} = -\frac{imc^2}{\sqrt{\frac{u^2}{c^2} - 1}}$$

Pour obtenir une énergie qui soit un nombre réel, on peut par exemple supposer que la masse au repos du tachyon est un nombre imaginaire m=iM avec M réel. Comme on ne peut pas observer un tachyon au repos (sa vitesse est nécessairement toujours supérieure à c dans tous les référentiels, cf. la question bonus), sa masse au repos n'a donc a priori pas d'interprétation au sens classique, et on ne peut pas définir son référentiel propre : définir sa masse m comme imaginaire n'est donc pas nécessairement un problème. Avec ce choix, on obtient ainsi :

$$E(u) = \frac{Mc^2}{\sqrt{\frac{u^2}{c^2} - 1}}$$
 avec $E(u), M \in \mathbb{R}$.

7.9 — Que pouvez-vous dire du comportement de E(u) en fonction de u? Pour un tachyon, comment évolue son énergie lorsqu'il accélère? lorsqu'il ralentit? Combien d'énergie faut-il fournir à un tachyon pour le faire ralentir jusqu'à u=c?

On remarque immédiatement que l'énergie E(u) du tachyon diminue quand sa vitesse augmente; réciproquement, son énergie E(u) croît quand sa vitesse u décroît; de plus,

$$\lim_{u \to c} E(u) = \lim_{u \to c} \frac{Mc^2}{\sqrt{\frac{u^2}{c^2} - 1}} = +\infty.$$

Ainsi définie, l'énergie E(u) d'un tachyon tend vers l'infini quand sa vitesse u tend vers c: il faudrait donc fournir une énergie infinie pour ralentir un tachyon jusqu'à u=c.

7.10 — Qu'en concluez-vous sur la physique de l'hypothétique tachyon dans le cadre de la relativité restreinte?

Les propriétés de l'hypothétique tachyon sont particulièrement étranges; la relativité restreinte prédit en particulier que selon le référentiel, l'ordre des événements le long de la trajectoire d'un tachyon puisse être inversé, ce qui est incompatible avec le principe de causalité. Le comportement de son énergie est aussi très surprenant. L'existence effective de tachyons est donc probablement un peu douteuse...

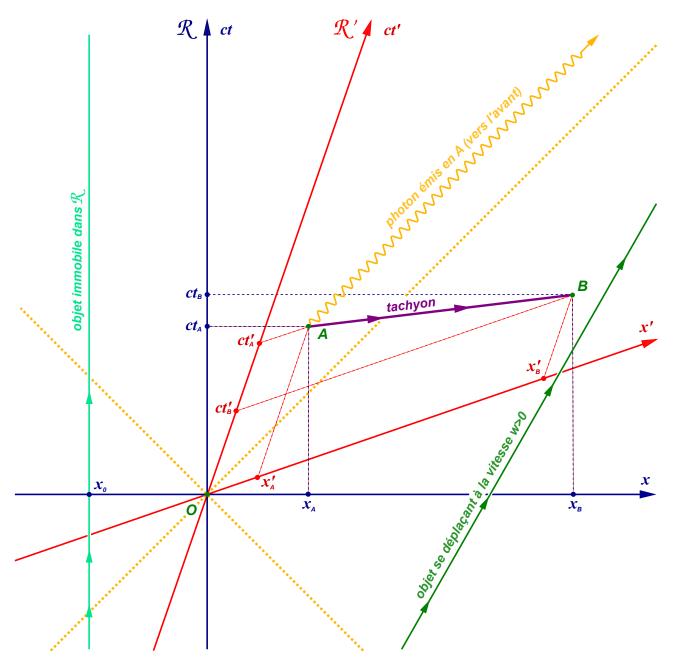


FIGURE 48 – Diagramme d'espace-temps (diagramme de Minkowski); En turquoise, la ligne d'univers d'un objet immobile dans \mathcal{R} à la position $x_0 < 0$; en vert, la ligne d'univers d'un mobile se déplaçant dans \mathcal{R} à la vitesse w selon \mathbf{e}_x avec 0 < w < c. En jaune, ligne d'univers d'un photon émis en A et se propageant vers les x>0. En violet, ligne d'univers d'un tachyon émis en A et reçu en B. L'ordre des événements A et B dépend du référentiel d'observation : dans B0, B1, et l'émission du tachyon se produit **avant** sa réception ; dans B2 au contraire, B3 et l'émission du tachyon en B4 se produit **après** sa réception en B6. On peut interpréter la séquence d'événements dans B2 comme l'émission en B3 d'un anti-tachyon, suivie de sa réception en A5.

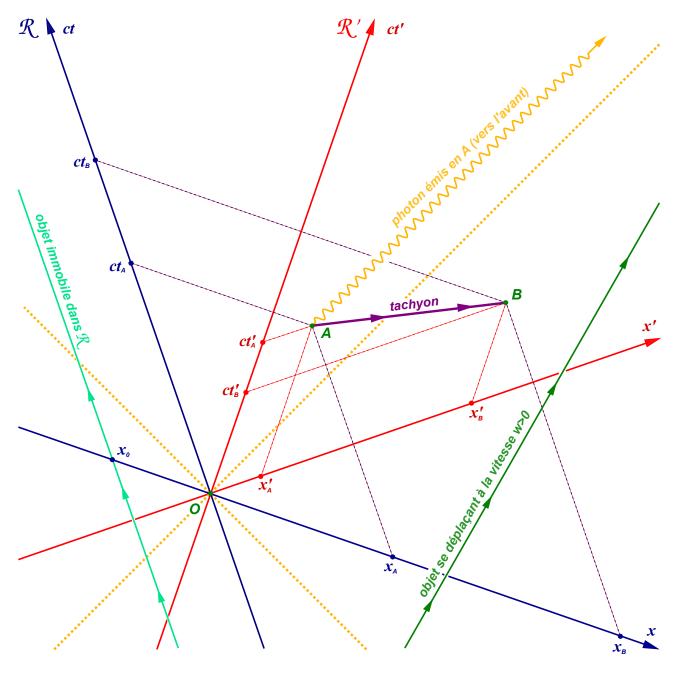


FIGURE 49 – Diagramme d'espace-temps (diagramme de Loedel); En turquoise, la ligne d'univers d'un objet immobile dans $\mathcal R$ à la position $x_0 < 0$; en vert, la ligne d'univers d'un mobile se déplaçant dans $\mathcal R$ à la vitesse w selon $\mathbf e_x$ avec 0 < w < c. En jaune, ligne d'univers d'un photon émis en A et se propageant vers les x > 0. En violet, ligne d'univers d'un tachyon émis en A et reçu en B. L'ordre des événements A et B dépend du référentiel d'observation : dans $\mathcal R$, $t_B > t_A$ et l'émission du tachyon se produit **avant** sa réception; dans $\mathcal R'$ au contraire, $t_B' < t_A'$ et l'émission du tachyon en A se produit **après** sa réception en B. On peut interpréter la séquence d'événements dans $\mathcal R'$ comme l'émission en B d'un anti-tachyon, suivie de sa réception en A.

7.11 — Question Bonus : montrez que si u>c dans le référentiel galiléen $\mathcal R$ on a alors nécessairement u'>c dans tout autre référentiel inertiel $\mathcal R'$ en translation uniforme par rapport à $\mathcal R$ avec $v=v(\mathcal R'/\mathcal R)< c$. Pensez à discuter tous les cas possibles en fonction du signe du dénominateur dans l'expression de u'.

Considérons un tachyon se déplaçant à la vitesse $\mathbf{u} = u \, \mathbf{e}_x$ dans \mathcal{R} , avec u > c. Sa vitesse u' mesurée dans un référentiel \mathcal{R}' tel que $v(\mathcal{R}'/\mathcal{R}) = v < c$ est donc (en supposant les vitesses \mathbf{u} , \mathbf{u}' et \mathbf{v} colinéaires):

$$u' = \frac{u - v}{1 - \frac{uv}{c^2}} \qquad \frac{u'}{c} = \frac{\frac{u}{c} - \frac{v}{c}}{1 - \frac{u}{c}\frac{v}{c}}$$

Posons $\alpha = u/c$ et $\beta = v/c$. On a :

$$\alpha = \frac{u}{c} > 1 > 0$$
 et $0 \leqslant \beta = \frac{v}{c} < 1$

Il est nécessaire de distinguer trois cas selon le signe du dénominateur.

a. Si $uv < c^2$, c'est à dire si $\alpha\beta < 1$, le dénominateur $1 - \alpha\beta$ est positif. Comme $0 \leqslant \beta < 1$, on en déduit que $1 + \beta \geqslant 1 > 0$; en multipliant l'inégalité $\alpha > 1$ par $1 + \beta > 0$, on obtient ainsi :

$$\alpha(1+\beta) > 1+\beta$$
 d'où $\alpha + \alpha\beta > 1+\beta$ soit $\alpha - \beta > 1-\alpha\beta$

Et par conséquent, comme $1 - \alpha \beta > 0$,

$$\frac{u'}{c} = \frac{\frac{u}{c} - \frac{v}{c}}{1 - \frac{u}{c} \frac{v}{c}} = \frac{\alpha - \beta}{1 - \alpha \beta} > 1 \quad i.e. \quad u' > c.$$

b. Si $uv>c^2$, c'est à dire si $\alpha\beta>1$, le dénominateur $1-\alpha\beta$ est négatif. Comme $\alpha>1$, alors $1+\alpha>2>0$. On peut donc multiplier l'inégalité $\beta<1$ par $(1+\alpha)$, ce qui donne :

$$\beta(1+\alpha) < 1+\alpha$$
 d'où $\beta+\alpha\beta < 1+\alpha$ soit $\alpha\beta-1 < \alpha-\beta$

Et par conséquent, comme $\alpha\beta - 1 > 0$,

$$\frac{\alpha-\beta}{\alpha\beta-1}>1$$
 d'où, en multipliant par -1 , $\frac{u'}{c}=\frac{\alpha-\beta}{1-\alpha\beta}<-1$

C'est à dire : u' < -c. Dans ce cas, le tachyon se déplace dans la direction opposée, avec une vitesse supérieure à c en norme.

c. Enfin, si $uv = c^2$, la vitesse u' du tachyon dans le référentiel \mathcal{R}' est infinie.

Pour un tachyon de vitesse u > c dans \mathcal{R} , sa vitesse u' dans \mathcal{R}' est toujours supérieure à c en norme. Un tachyon se déplace donc à une vitesse plus grande que c dans tous les référentiels galiléens.

FIGURE 50 – The Particle Zoo : le zoo des particules élémentaires du Modèle Standard, en version "peluches", avec notamment le tachyon dans la catégorie "particules hypothétiques".